Prepared for MAUNSELL/AECOM

Darling River Water Savings Project

Hydrology Evaluation

of

Key Options

FINAL REPORT - MAY, 2007

WEBB, MCKEOWN & ASSOCIATES PTY LTD

EXEC	CUTIVE SUMMARY	4
1 I	NTRODUCTION	9
1.1	Purpose and Content of the Report	9
2 N	IENINDEE LAKES OPERATION	12
2.1	Target Storage Operation	12
2.2	Releases to the Great Darling Anabranch and Lake Tandou	12
2.3	Interstate Commitments	13
2.4	Drought Management	13
2.5	Flood Management	15
3 E	DARLING RIVER WATER SAVINGS OPTIONS	17
3.1	Tools for Determination of Water Savings	17
3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	 Description of Modelled Water Saving Options General The Base Case (Current Operation and Recent Development) Increasing the Release Rate from the Lakes when in NSW Control Variation in Dilution Flow Release Patterns Restoration of Lakes to more Natural Wetting and Drying Cycles Construction of a Two Menindee Lake Cells (Both Filled) Construction of a Two Menindee Lake Cells (One Filled) Increasing the Capacity of Lake Pamamaroo Potential Water Savings from Privately Owned Storages Description of Non-Modelled Water Saving Options Inproved Extraction from Residual Pools Improved Use of Existing Smaller Deeper Lakes Use or Creation of Downstream Storage Capacity	 17 17 18 20 <
4 C	DISCUSSION OF MODELLED RESULTS	29
4.1	General	29
4.2	Menindee Scheme - Potential Evaporative Savings	29
4.3 4.3 4.3	Consequences of Menindee Scheme Savings1Longterm Average Diversion Change and Reliability2Flow Change3Salinity	30 30 31 37
4.4	Variation in Dilution Flow Release Patterns	40

4.5 1	Potential Water Savings from Privately Owned Storages	40
4.5.1	Purchase of All Supplementary Licenses	41
4.5.2	Removal of Off-River Storage	41
4.5.3	Stopping Evaporation from Off-River Storages	41
5 DIS	SCUSSION OF NON MODELLED RESULTS	42
5.1 U	Use or Creation of Upstream Storage Capacity	42
5.1.1	Instream Storage in The Upper Darling and Floodplain Storage at Menindee	42
5.1.2	Improved Use of Existing Smaller Deeper Lakes	44
5.1.3	Tributary Storages	45
5.2 1	Use or Creation of Downstream Storage Capacity	48
5.2.1	Instream Storage in the Lower Darling	48
5.2.2	Instream Storage in the Murray	48
6 CC	NCLUDING REMARKS	49

List of Figures

Figure 1 – Distribution of Resources under Dry Conditions	10
Figure 2 – Menindee Scheme Volume Exceedence Curve	14
Figure 3 – Distribution of Scheme Resources When In NSW Control	15
Figure 4 – Darling Tributary Relative Flow Contribution (EOS = End of System)	16
Figure 5 – Natural and Benchmark Lake Exceedence Volumes	21
Figure 6 – Existing and Adjusted Menindee Outlet Capacity Relationship	22
Figure 7 – Frequency of Lake Residual Storage Volume Exceedence	24
Figure 8 – Approximate Opportunities for Residual Pumping Over Time	25
Figure 9 – Annual Flow Exceedence Curve (Darling River @ Wentworth)	32
Figure 10 - Annual Flow Exceedence Curve (Murray River @ Lock 7)	32
Figure 11 – Base Case and NoMExCO Lower Darling Upstream Wentworth Weir	34
Figure 12 – Base Case and NoMExCO Murray River @ Lock7	35
Figure 13 – Base Case and NoMExCO Murray River Upstream Wentworth Weir	36
Figure 14 – Menindee Scheme Surface Area versus Volume Relationship	40
Figure 15 – Combined Storage Area versus Volume Relationship	42
Figure 16 – Combined Storage Area Versus Volume Relationship	43
Figure 17 – Distribution of Resources Under Dry Conditions	44
Figure 18 – Distribution of Resources Under Dry Conditions	45
Figure 19 – Progression of Event Along the Namoi River	46
Figure 20 – Progression of Event Along the Barwon Darling River	46

List of Tables

Table 1- Net Evaporative Losses for Water Impoundments	9
Table 2 – Modelled and Current Lake Maximum Volumes	18
Table 3 – Modelled Residual Storage	19
Table 4 – Advised Residual Storage Volumes	24
Table 5 – Bourke Instream Storage	26
Table 6 – Bourke Ring Tank Storage	26
Table 7- Burtundy In-stream Storage	27
Table 8 – Key Modelled Options - Evaporative Savings (GL/Yr)	29
Table 9 – Longterm Average Diversion Change (GL/Yr)	31
Table 10 – Average Annual Flows (GL/Yr)	33
Table 11 – Increases in Average Annual Flows from Base Case	33
Table 12 – Longterm Average End of Month Salinity (EC)	37
Table 13 – Longterm Average End of Month Salinity Increase (EC)	37
Table 14 – Longterm Median End of Month Salinity (EC)	38
Table 15 – Longterm Median End of Month Salinity Increase (EC)	38
Table 16 - Water Savings from Privately Owned Storages (Namoi Case Study)	41
Table 17 – Possible Delivery Loss Scenarios	47

EXECUTIVE SUMMARY

This report evaluates the potential water saving volumes and associated impacts for a range of core options in the Darling Basin, focussing primarily on those at Menindee Lakes. The Menindee Lakes Scheme has a full supply capacity of 2,050 Gigalitres and provides water for New South Wales, South Australian, and Victorian purposes. The shallow expansive nature of the lakes scheme results in considerable losses through evaporation. The full extent of this is manifested in streamflows, which are 23% less below the lakes than the flows immediately upstream.

The results from this report will be used as input into the development of water saving strategies for the basin as part of the Darling River Water Savings Project. As such the options in this report should not be viewed as water saving strategies, but rather as components to strategies.

The magnitude of all water savings in this report has been determined at the source. However, the consequences of savings in terms of changes to river flows and consumptive reliability have been assessed wherever possible over a wider area including both the Lower Darling and Murray Rivers.

Water savings have been quantified using a mix of observed data, together with results from sophisticated computer models. Hydrologic modelling for this project has been carried out using the Murray Monthly Simulation Model (MSM), (Close, A.F. 1986). This model is the principle water planning tool for the Murray and Lower Darling River systems.

Options that were assessed using modelling are:

- Base Case The base case (current operation and development)
- M0 Rapid emptying of the Scheme in the range of 480GL to 200GL
- M1 Rapid emptying of the Scheme in the range of 480GL to 300GL
- M2 Rapid emptying of the Scheme in the range of 680GL to 100GL
- M3 Rapid emptying of the Scheme in the range of 300GL to 100GL
- NoMC More natural wetting and drying of Lake Menindee and Lake Cawndilla
- NoCExMO More natural wetting and drying of Lake Cawndilla
- NoCEnMO More natural wetting and drying of Lake Cawndilla
- NoMExCO More natural wetting and drying of Lake Menindee
- NoMEnCO More natural wetting and drying of Lake Menindee
- MCell Construction of two Menindee Lake cells
- 0.5M Construction of a two Menindee Lake cells (One Filled)
- PInc Increasing the capacity of Lake Pamamaroo
- Potential water savings from privately owned storages.

Options that were assessed using observed data on flows, losses and infrastructure performance are:

- Improved extraction from residual pools in the Menindee Scheme.
- Improved use of existing smaller deeper lakes in the Menindee Scheme.
- Utilisation of existing and new storages upstream of the Menindee Scheme.

• Utilisation of existing and new storages downstream of the Menindee Scheme.

Menindee Scheme Saving Options

Evaporative savings and diversion changes from modelled scheme options are presented in Tables E1 and E2.

All but one of the modelled options produces evaporative water savings. The exception is the option for increasing the capacity of Lake Pamamaroo. For this option the savings created by increased storage in Lake Pamamaroo is exceeded by the additional evaporative losses incurred in Lake Wetherell.

All but two options produce reductions in Lower Darling diversions of greater than 5%. For all options, diversion changes for New South Wales, Victorian and South Australian Murray users is small.

Out of all restoration options, restoration of both Menindee and Cawndilla Lakes to more natural wetting and drying cycles achieves the biggest evaporative saving of 211 Gigalitres per annum. However, this option also has the largest reduction in irrigation diversions (75% in the Lower Darling).

Out of all rapid emptying options, emptying in the range of 680GL to 100GL gives the biggest evaporative saving of 91 Gigalitres per annum. Lower Darling diversions are reduced by 13%. Murray diversions are largely unchanged.

Option	Wetherell	Pamamaroo	Menindee	Cawndilla	Total	Decrease
-	Net Evap	Net Evap	Net Evap	Net Evap	Net Evap (GL/Yr)	From Base Case (GL/Yr)
Base case	50	82	168	126	426	0
M0	62	77	128	105	372	-54
M1	64	81	133	108	387	-39
M2	55	69	117	95	335	-91
M3	69	81	143	113	406	-20
NoMC	117	94	5	0	215	-211
NoCExMO	80	91	183	0	353	-73
NoCEnMO	82	92	176	0	351	-76
0.5M	56	84	87	130	357	-70
NoMExCO	75	83	0	134	291	-136
NoMEnCO	83	92	0	118	292	-134
PInc	65	86	162	123	435	+9
MCell	50	82	130	123	388	-38

Table E1 – Key Modelled Options - Evaporative Savings (GL/Yr)

Year	Total NSW Lower Darling Div (GL/Yr)	Decrease from Base Case (GL/Yr)	Total NSW Div (GL/Yr)	Decrease from Base Case (GL/Yr)	Total Vic Div (GL/Yr)	Decrease from Base Case (GL/Yr)	Total SA Div (GL/Yr)	Decrease from Base Case (GL/Yr)
Base case	129		1966	0	1675		1139	
M0	119	-10	1979	13	1671	-4	1143	4
M1	121	-8	1986	20	1674	-1	1143	4
M2	112	-17	1969	3	1665	-10	1145	6
M3	124	-5	1979	13	1673	-2	1144	5
NoMC	32	-97	1922	-44	1636	-39	1141	2
NoCExMO	55	-74	1968	3	1670	-5	1142	3
NoCEnMO	55	-74	1969	3	1671	-4	1142	3
0.5M	116	-13	1968	2	1675	0	1142	3
NoMExCO	116	-13	1963	-2	1673	-2	1142	3
NoMEnCO	112	-17	1964	-2	1672	-3	1143	4
PInc	122	-7	1966	0	1675	0	1140	1
MCell	129	0	1966	0	1675	0	1139	0

Table E2 – Longterm Average Diversion Change (GL/Yr)

Flow changes resulting from key modelled options are presented in Tables 11 and 12 within the report. With the exception of the option for increasing the capacity of Lake Pamamaroo, all options produce increased flows in the Lower Darling. Most options also reduce the volume of flow released and spilt from Lake Cawndilla.

Flows in the Murray upstream of Wentworth are largely unchanged by water saving options at the Menindee Scheme. The largest change of 80 Gigalitres per annum occurs with restoring Lakes Menindee and Cawndilla to natural wetting and drying cycles.

Flows downstream of Wentworth generally increase in most options. This results in increased spills from Lake Victoria and a corresponding reduction in Lake Victoria regulated releases. Flows across the South Australian border also increase for most options.

Modelled options produce changes in salinity concentrations both within and downstream of the lakes scheme. Restoration of Lakes Menindee and Cawndilla to more natural wetting and drying cycles result in an increase in average salinity in the other lakes. However, restoration of Lake Menindee alone results in a reduction in average salinity in Lakes Cawndilla and Wetherell. The average salinity in Lake Pamamaroo is also improved if the Cawndilla outlet capacity is increased.

Restoration of Lake Cawndilla to a more natural wetting and drying cycle results in a reduction in salinity in Lake Pamamaroo, an increase in salinity in Lake Menindee and negligible change in Lake Wetherell. Options that involve rapid emptying of the lakes appear to result in increased lake salinity levels.

Downstream of the scheme, average salinity levels generally increase in the Lower Darling and the Murray for options that involve restoration of the lakes to more natural and wetting and drying cycles. However, for options that involve more rapid emptying of the lakes, average salinity levels decrease both in the Lower Darling and in the Murray.

Off River Storage Saving Options

Three potential water savings options with respect to reducing evaporation from off river storages were evaluated for a Namoi Valley case study. These consisted of

- 1. Purchasing of all supplementary licenses.
- 2. Decommissioning off river storages and enlarging Keepit and Split Rock Dams.
- 3. Reducing evaporation by covering off river storage surface area.

Reduced access to supplementary water was found to be offset by increased general security and floodplain harvesting usage. As a result, reduction in evaporation from off-river storages was negligible. Reduced access to supplementary water does however increase the Namoi end of system flows by 13 Gigalitres per annum.

Removal of off river storage capacity and a corresponding increase in the capacity of Keepit and Split Rock Dams results in increased evaporative losses from Keepit and Split Rock. However, this is more than offset by the reduction in evaporation from off-river storages. The total saving in evaporation from this option is 55 Gigalitres per annum. The major impact from this saving strategy is the large decrease in valley diversions. Therefore enlargement of Keepit and Split Rock cannot offset the impacts of removal of off-river storage.

Covering off river storages results in extra water in the storages and evaporative savings of 79 Gigalitres per annum. This extra water allows users to divert less water and plant a greater area. An additional benefit is that the average volume in Keepit and Split Rock Dam also increases with little change in major storage evaporation.

More Efficient Instream and Floodplain Storage Saving Options

Creation of Instream and floodplain storage upstream and downstream of the Menindee Scheme has been assessed as potentially being more efficient than storing water in the Menindee Scheme.

Instream and floodplain storage immediately upstream of the Menindee Scheme will result in reduced evaporative volumes when compared to the equivalent volume being stored at the Menindee Lakes Scheme. However, additional instream and floodplain storage has to approach in excess of 140 Gigalitres for a surface area of 5,200Ha before any appreciable evaporative savings can be made.

The small volume of instream storage in the Lower Darling below the Menindee Scheme means that it usefulness in terms of storage and reduction in evaporative losses is severely limited. Consequently, no further assessment of this option has taken place.

The viability of storage of water in existing tributary major dams has also been assessed. Possible locations for storage and supply of Lower Darling volumes are:

- Keepit Dam on the Namoi River,
- Chaffey Dam on the Peel River,
- Pindari Dam on the Macintyre River.

A preliminary assessment of delivery losses associated with differing storage and delivery volumes from Keepit Dam to the Lower Darling in critical supply years was undertaken using historic information. Losses of 50% in the Namoi and an initial loss of 30 Gigalitres (for Weir filling) and a continuing loss of 15% were assumed in the Barwon Darling.

Losses associated with delivery of water from Keepit Dam and evaporation from the Menindee Scheme are similar in magnitude. However, there may be an environmental and riparian benefit to the losses associated with delivering water from upstream. Evaporative losses have no such benefit.

In conclusion, hydrologic analysis of key options has indicated that that significant water savings have been found to be possible both at the Menindee Scheme and elsewhere in the Darling Basin. However the consequences of this with respect to alterations in diversion volumes, increased salt concentrations and flow changes appears to be high.

1 INTRODUCTION

1.1 Purpose and Content of the Report

The opportunity for water savings in the Darling Basin lies primarily through reduction of evaporative losses from the many storages that are used to enhance supply reliability for the annual cropping regimes that predominate. The long-term net evaporative losses for the various types of storages that exist within the Darling Basin are presented in Table 1.

Valley	Major Dams	Hillside Dams ^a	Ring Tanks	Total
Dondon Divora	20	55 ª	125	200
Doldel Kivels	29	33	123	209
Moonie	0	/8 "	0	/8
Gwydir	31	49 <i>^a</i>	109	189
Namoi/Peel	52	187 <i>a</i>	52	291
Macquarie	56	128 ^a	56	240
Condamine	57	214 ^a	194	465
Balonne				
Nebine	0	0	0	0
Warrego	0	16 ^a	0	16
Paroo	0	0	0	0
Barwon Darling	0	0	94	94
Total Upper Darling Basin	225	727 ^a	630	1582
Lower Darling	393	0	20	413
Total Darling Basin	618	727 ^a	650	1995

Table 1- Net Evaporative Losses for Water Impoundments¹

Note

^a There is some doubt concerning hillside dam sizes. This also means there is doubt about the accuracy of these evaporation estimates. Whether these figures are net or gross evaporation has not been clarified.

^b This figure includes all the small weirs. Annual Losses from Beardmore Dam, Leslie Dam, Jack Taylor Weir, Moolabah Weir and Buckinbah Weir combined are approximately 40 GL.

In almost all cases the majority of these storages reside on farm and in private ownership. The exceptions to this are the government owned storages. These are typically constructed in the incised valleys that characterise the headwaters of the Darling tributaries. The low evaporative and high rainfall regimes in these regions, together with large storage depths and small surface areas give rise to small net evaporative losses. As a consequence, the opportunity for savings from these storages is small. This can be seen in Table 1, where the major dams in the Upper Darling basin only account for a combined evaporative loss of 225 Gigalitres per annum, compared to 727 Gigalitres per annum for hillside dams and 630 Gigalitres per annum for ring tanks.

¹ Source; MDBC - State of the Darling Interim Hydrology Overview Report- 2006

One exception to this major dam trend is the government owned Menindee Lakes Scheme. The scheme has a full supply capacity of 2,050 Gigalitres and provides water for both New South Wales, South Australian, and Victorian purposes. Utilising existing natural lakes for storage, the shallow expansive nature of the lakes scheme results in considerable losses through evaporation. The full extent of this is manifested in streamflows, which are 23% less below the lakes than the flows immediately upstream. A further example of the scale of evaporative losses can be seen in Figure 1, which shows the resource distribution required to meet Broken Hill and High Security and Riparian requirements for New South Wales when dry times exist. As can be seen the evaporative loss component of the available resource is considerable.

Figure 1 – Distribution of Resources under Dry Conditions

Demands on the Menindee Scheme include providing water for Broken Hill and for adjacent and downstream water users in the Lower Darling. The scheme is also used by both New South Wales and Victoria to provide entitlement and dilution flows to South Australia in accordance with the Murray Darling Basin Agreement. Some flood mitigation benefit from the scheme is also possible. However, this is heavily dependent upon storage volumes and operational practices.

Historically, lake management has aimed to maximise the potential supply reliability, ensure ecological sustainability and to maximise water quality of water within the lakes and the Lower Darling River. Operational objectives can be summarised as:

- minimise lake evaporation,
- maximise lake storage volumes,

- maximise water quality in terms of salinity, and blue green algae (cyanobacterial) blooms,
- · maximising ecological benefits, including fish and wildlife habitat,
- control of foreshore erosion.

This report provides a hydrologic assessment of the potential significant water saving volumes that can be made from structural and operational strategies at both Menindee Lakes and the greater Darling Basin. Information from this report will be used as input into the option and strategy evaluation process for realising significant water savings in the Darling River.

The significance of a water saving volume is dependent upon both its size and when it occurs. A small saving volume in a time of resource shortage is likely to be just as important as a large volume when resources are plentiful. This has been borne in mind when selecting key saving options and throughout the hydrologic assessment process.

In conducting the hydrologic analysis the magnitude of water savings has been determined at the source. However, the consequences of savings in terms of changes to river flows and consumptive reliability have been assessed wherever possible over a wider area.

Due to the short study timeframes the methodology for assessing water savings for each option has varied. Wherever possible, a quantitative analysis using existing hydrologic models and data has been undertaken. However, in some instances a qualitative assessment of the likely magnitude of water savings and consequences has had to be made.

2 MENINDEE LAKES OPERATION

2.1 Target Storage Operation

Operation of the lakes scheme mainly consists of movement of water between the interconnected lakes, and supply of water to meet downstream demands whilst minimising evaporative losses. Evaporation in the area is approximately 2.5 metres (426 Gigalitres per annum) a year.

Based on discussions with staff from the Department of Natural Resources and State Water, the preferred lake filling strategy is to:

- 1. Fill Lake Wetherell to 59.8 metres AHD.
- 2. Fill Lake Pamamaroo to full supply level (60.45 metres) (filling Lakes Pamamaroo and Wetherell simultaneously above 59.8 m).
- 3. Fill Lake Menindee/Cawndilla to full supply level (59.84 metres).
- 4. Fill Lake Wetherell to full supply level (61.67 metres).
- 5. Surcharge Lake Pamamaroo (61.5 metres) and Lake Wetherell (62.3 metres), and then Lakes Menindee and Cawndilla (60.45 metres).

In most instances the procedures for releasing water from the lakes are generally the reverse of this, with all immediate consumptive demands being firstly met from Lake Menindee and Lake Cawndilla and Lake Wetherell above 59.8 m.

2.2 Releases to the Great Darling Anabranch and Lake Tandou

Lake Cawndilla discharges into the Darling Anabranch via Tandou Creek with the water level being maintained by a regulator at Packers Crossing. The lake is primarily used to supply demands along this system. The main user of water from the lake is Tandou Pty Ltd. Tandou Pty Ltd syphons water to its irrigation development at Lake Tandou. Generally, rates of release from Lake Cawndilla range from 200 to 500 Megalitres a day depending upon seasonal conditions. The Cawndilla outlet regulator has a capacity of 2,000 Megalitres per day but seldom operates at this due to head limitations.

The Pennelco pumps on the Lower Darling River are used to supply Tandou Pty Ltd when insufficient resources are available from Lake Cawndilla. These pumps are not operated to supply other water users or the Anabranch.

A pipeline to supply stock and domestic uses and environmental watering along the anabranch is currently being constructed. When finalised, this pipeline will see a change to the operation of the Menindee Lakes system.

2.3 Interstate Commitments

When the combined volumes of the Lakes exceed 480 Gigalitres during a draw down phase and 640 Gigalitres during a filling phase, water may be released to the Lower Darling River as requested by the Murray-Darling Basin Commission (MDBC). When MDBC resources are available in Menindee Lakes, releases from the Hume Reservoir are made only to the extent to meet minimum flow requirements at Euston on the River Murray.

The MDBC will generally specify releases from Menindee Lakes when:

- total storage in the lakes is greater than 480 Gigalitres, and
- there is insufficient flow in the River Murray and storage in Lake Victoria to meet South Australia's flow requirement to maintain storage in Lake Victoria at or above specified target volumes.

Throughout these periods of MDBC control, operation of the Lakes is still optimised in order to minimise evaporative losses and maximise water available to supplement River Murray flows by transferring water from the Menindee Lakes to Lake Victoria.

Demands on the Lake system when in MDBC control can be up to 7,000 Megalitres per day, although higher releases may be required under certain circumstances such as a very dry season with high Murray River irrigation demand, or if storage in Lake Victoria is below target prior to the start of the irrigation season. The maximum regulated flow rate in the Lower Darling is between 9,000 and 9,500 Megalitres per day. Release rates of 7,000 Megalitres or more exceed the outlet capacity of any of the individual regulators, other than the main weir, leading to demand being usually supplied from two or more lakes.

2.4 Drought Management

The Menindee Lakes Scheme was constructed to provide for water conservation. Consequently, management for drought conditions forms an important aspect of operation of the lakes.

When the total storage volume within the scheme falls to 480 Gigalitres, all rights to the water remaining in storage reverts to New South Wales, and supply is primarily for Lower Darling water users only.

The 480 Gigalitres can potentially provide security of supply to all adjacent and downstream users for one year under a zero inflow scenario. This assumes that all entitlements are fully utilised. In most cases, entitlements are not fully utilised and this under usage extends supply potential beyond one year.

More often than not when the scheme falls to 480 Gigalitres, the upstream catchments can be in extended drought. This is not uncommon in the Darling with the scheme dropping below 480 Gigalitres in 50% of **years** and as shown in Figure 2 for 20% of the time.

Figure 2 – Menindee Scheme Volume Exceedence Curve

Although the scheme can supply all users for one year when at 480 Gigalitres, a continuing drought results in the availability of water for licensed consumptive use on the Lower Darling being reduced, and restrictions being imposed. The priority for maintaining supply for different purposes is prescribed in the Water Management Act 2000. Under the Act, priority for security of supply aims to ensure adequate supplies in the following order:

- town water supply and riparian entitlement for domestic supply,
- riparian entitlement for stock supply,
- high security for permanent plantings (horticulture and vines),
- general security for non-permanent plantings (pasture and cereal crops).

A typical lake volume distribution with respect to demands when the lakes are within New South Wales control and under prolonged drought is shown in Figure 3. At the commencement of drought management (typically at volumes of 275 GL), resources in the scheme are sufficient to supply Broken Hill and High Security and Riparian users for 18 months.

Figure 3 – Distribution of Scheme Resources When In NSW Control

2.5 Flood Management

The severity of floods in the Menindee Lakes and the Lower Darling River is dependent on:

- the volume, peak and duration of floods upstream,
- the volume currently stored in the Lakes,
- the level of lake surcharge adopted during a flood event.

The primary objective of flood operations is to ensure the safety of the structures and to minimise damage to downstream property. The lakes scheme was primarily not built to provide flood mitigation. In most instances the benefit of the lakes for the purposes of flood mitigation is small, due to the limited lake storage capacity relative to the cumulative volume of floodwaters.

Floods in the Darling River (which commences at the confluence of the Culgoa and Barwon rivers) are dependent upon rainfall events generating floods in the catchments of the major upstream tributaries. The relative distribution of flows to the Darling River from Queensland and New South Wales tributaries is shown in Figure 4. The travel time of floodwaters from these upper catchments to the lakes can be up to three months and accurately predicting the volume, duration and peak of a flood is difficult, particularly when Darling River tributaries closer to Menindee, including the Paroo and Warrego Rivers, contribute inflow. The long flood travel times in the Darling River mean that some additional capacity can be realised by pre-releasing stored volumes before the flood arrives at the scheme.

Figure 4 – Darling Tributary Relative Flow Contribution (EOS = End of System)

3 DARLING RIVER WATER SAVINGS OPTIONS

3.1 Tools for Determination of Water Savings

Water savings have been quantified using a mix of observed data, together with results from sophisticated computer models.

Numerous options for potential significant water savings within the lakes have been identified in this study. Some options lend themselves to computer modelling whilst others require an assessment using observed information for river flow, losses and infrastructure volumes.

The computer models allow the long-term hydrologic effects of development, water use and structural and operational changes in river management to be assessed in a consistent and detailed way. Computer models of river systems are, necessarily, simplified representations of the many complicated interactions between the many factors that affect river flows. The complex and variable nature of the basin's hydrology, and the changing scale and effect of water use development, mean modelling is the most reliable way to assess the impact current development and management arrangements on long-term water savings and flow outcomes.

Hydrologic modelling for this project has been carried out using the Murray Monthly Simulation Model (MSM), (Close, A.F. 1986). This model is the principle water planning tool for the Murray and Lower Darling River systems.

3.2 Description of Modelled Water Saving Options

3.2.1 General

For those options that can be modelled, detailed modelling of every option in the short study timeframe is not possible. This is further complicated by the true extent of water savings usually only being realised through the integration of individual "saving options".

Fortunately, as all options seek to produce significant savings through combinations of reduction in demand, reduction in lake storage time, and reduction in lake storage area, it is possible to assess key options that can then be used to infer savings for the larger option suite. Key options for which water savings were assessed using the detailed model are:

Key Modelled Options

- > The Base Case (Current Operation and Development).
- > Increasing the release rate from the Lakes when in NSW control.
- Variation to dilution flow release patterns.
- Restoration of more natural wetting and drying cycles for Lake Menindee and Lake Cawndilla.
- > Restoration of more natural wetting and drying cycles for Lake Menindee.
- Restoration of more natural wetting and drying cycles for Lake Cawndilla.
- Construction of a two cells in Lake Menindee (Both Filled).
- Construction of two cells in Lake Menindee (One Filled).
- Increasing the Capacity of Lake Pamamaroo.
- Potential water savings from privately owned storages.

Restoration options entail utilising the lakes for flood mitigation purposes only.

3.2.2 The Base Case (Current Operation and Recent Development)

The base case is used as a benchmark comparison with respect to all water savings options. The base case ideally represents current management, and operational practices as well as current infrastructure volumes and resource demands.

This base case is the same as that used for the Menindee EIS Project, and includes the anabranch pipeline with an environmental release of 60GL every two years on average. It also assumes use of the Penelco pumps to supply Tandou Pty Ltd when resources are unavailable from Lake Cawndilla.

The current scheme inflow data in the base case reflects varying levels of development upstream of the Lakes. Around the mid 1990's the MDBC updated their estimate of the Menindee Scheme monthly inflows by adjusting the pre-development flow dataset for upstream New South Wales development at that time based on New South Wales model results. Therefore, the model inflow data reflects mainly mid 1990's New South Wales development levels. The inflow set does not incorporate the reduced flows caused by growth in Queensland in the Late 1990's. Whilst reduced inflows will reduce Lake Evaporation, changes in Lake Evaporation from the benchmark are likely to be unaffected.

The filling strategy adopted in the model base case is:

- 1. Fill Lake Wetherell to 59.8 metres AHD.
- 2. Fill Lake Pamamaroo to full supply level (60.45 metres).
- 3. Fill Lake Menindee/Cawndilla to full supply level (59.84 metres).
- 4. Fill Lake Wetherell to full supply level (61.67 metres).
- 5. Surcharge Lake Pamamaroo (61.5 metres) and Lake Wetherell (62.3 metres), and then Lakes Menindee and Cawndilla (60.45 metres).

The maximum storage volumes adopted in the model are presented in Table 2.

Lake	Base Case Maximum Volume (GL)	Current Operational Maximum Volume (GL)
Wetherell	262	262
Pamamaroo Copi Hollow	350	350
Menindee	719	631
Cawndilla	705	631
Total Scheme Volume	2049	1874

Table 2 – Modelled and Current Lake Maximum Volumes

The assumed residual storages in the base case for each of the lakes are presented in Table 3². As can be seen, the modelled base case residual storage volumes differ

² At the time of preparing this report the with the exception of Lake Cawndilla, the accuracy of the Menindee Scheme capacity table at low levels is thought to be good, with bathometric surveys of Wetherell and Pamamaroo, and aerial mapping of Lake Menindee having taken place. A more accurate survey of the lower parts of Lake Cawndilla may be warranted given the importance of the residual pool volume.

somewhat from the advised Department of Natural Resources (DNR) residual storage volumes. The greatest difference is in the assumed residual pool volume for Lake Cawndilla.

Lake	Base Case Residual Volume (ML)	Advised Residual Volume (ML)
Lake Cawndilla	9,620	100,970
Lake Menindee	88,000	71,190
Lake Pamamaroo	10,063	31,730
Lake Wetherell	390	12,376
Total Residual Storage	108,640	216,266

Table	3 –	Modelled	Residual	Storage
-------	-----	----------	----------	---------

Differences between base case and actual residual pool volumes will affect the volumes of savings identified in this report. In the case of Lake Cawndilla, the modelled base case assumes that stored volumes in the range of 100 Gigalitres to 9.6 Gigalitres can be released through the existing outlet works. In practice, lowering of the storage from 100 Gigalitres to 9.6 Gigalitres will require pumping. It is likely that if the base case were adjusted to reflect an appropriate residual pool volume of 100 Gigalitres then savings identified in this report will be increased for any option that incorporates works capable of accessing the residual pools. The magnitude of increase will be commensurate with the frequency at which these residual pool volumes are accessed over the period of model simulation and the amount of difference between the base case and advised residual pool volume.

It should also be noted that the Lake Wetherell capacity table in the modelled base case does not include an adjustment for dead storage in Lakes Tandure, Balaka, Malta, or Bijijie. The Lake Menindee capacity table does not include Lake Speculation. The Lake Cawndilla capacity table includes Lakes Spectacle, Morton Boolka, Cawndilla Ck, and Lake Eurobilli, and the Lake Pamamaroo capacity table includes Copi Hollow with an adjustment for Copi Hollow dead storage of 2,800 Megalitres.

When the volume of water in Lakes Menindee and Lake Cawndilla reaches (55.46), Lake Cawndilla becomes isolated from Lake Menindee. Water can then only be released from Lake Cawndilla through the Cawndilla outlet regulator. At the time of isolation, the stored volume for the base case in Lake Cawndilla is 164 Gigalitres. State Water has advised that a more appropriate estimate is 212 Gigalitres. The effect of this on modelled options is that the evaporative savings as a result of improved works at Lake Cawndilla are likely to be slightly underestimated.

The modelled base case does not incorporate the current drought security arrangements of Figure 1. Consequently, the impact of some options on general security users may be sightly overstated. Despite not incorporating current drought security measures, the lakes scheme does not run out of water under the benchmark scenario. As a consequence, from a quantity perspective sufficient resources are available to meet Broken Hill and High Security requirements over the simulation period.

3.2.3 Increasing the Release Rate from the Lakes when in NSW Control

When the lakes are in New South Wales control and being drawn down for New South Wales requirements, a volume of water sufficient to allow Broken Hill town water supply, high security and riparian demands to be met over an 18 month window assuming no lake inflows is set aside. A significant portion of this volume is for evaporative losses, with volumes increasing if the 18 month window includes two summer periods. This was shown previously in Figure 1.

A number of scenarios whereby the release rates from the lakes is increased when in New South Wales control (below 480 and 680 Gigalitres) have been modelled. Without any clear guidelines on how this water might be released or used, the model was setup to just achieve a monthly target volume of 200 Gigalitres per month at Burtundy (bottom of Lower Darling River) that would simulate the extra water being transferred through to South Australia. The following options were simulated with the model.

- > Rapid emptying of the Scheme in the range of 300GL to 100GL.
- Rapid emptying of the Scheme in the range of 480GL to 200GL.
- Rapid emptying of the Scheme in the range of 480GL to 300GL.
- Rapid emptying of the Scheme in the range of 680GL to 100GL.

3.2.4 Variation in Dilution Flow Release Patterns

Under the Murray Darling Basin Agreement, additional releases of 58 Gigalitres per month are made from the Menindee Lakes Scheme to provide dilution flows for South Australia. Variation of this pattern to allow delivery of dilution flows over a shorter time period may have the potential to produce water savings whilst still reducing salinity at Morgan. The viability of this water saving option will be heavily dependent upon channel capacity constraints and the changed dilution pattern resulting in substantial reduction in average surface area.

3.2.5 Restoration of Lakes to more Natural Wetting and Drying Cycles

Reducing the frequency of lake filling will produce water savings, with greater reductions in filling leading to greater savings. The lake exceedence volumes for the scheme and individual lakes are shown in Figure 5. A number of options that aim to restore one or more lakes to natural drying cycles were evaluated. These are discussed in the following sections.

More Natural Wetting and Drying of Lake Menindee and Lake Cawndilla

In this option both Lake Menindee and Lake Cawndilla are restored to a more natural cycle of wetting and drying. In modelling this option, the volumes into Lake Menindee and Lake Cawndilla was reduced to zero by constraining the Lake Menindee inlet regulator capacity. In reality, implementation of this scenario would see the lakes still being utilised during flood times. Unfortunately, this flood mitigation behaviour cannot be represented in the model. As a consequence, any calculated water saving amounts will have to be reduced to account for the short durations of times that the lakes are used for flood mitigation purposes.

Figure 5 – Natural and Benchmark Lake Exceedence Volumes

More Natural Wetting and Drying of Lake Menindee

An alternate option involves restoration of only Lake Menindee to a more natural regime of wetting and drying. Implementation of this scenario, assumes that water will enter Lake Cawndilla from Lake Pamamaroo via an alternate means. This could be either by construction of a supply channel through or around the outer edge of Lake Menindee. In modelling this option it was assumed that the storage volume versus area relationship for Lake Cawndilla is identical to that which currently exists. This assumption is reliant on the construction of a block bank between the two lakes.

Two variations of this saving option were modelled:

- i) The first with the existing outlet regulator for Lake Cawndilla.
- ii) The second with an increased Cawndilla regulator outlet capacity of 6,000 Megalitres per day to the Lower Darling river.

The second run tries to compensate for the reduction in available outlet capacity as a result of the more natural wetting and drying of Lake Menindee.

More Natural Wetting and Drying of Lake Cawndilla

This option is similar to the proceeding Lake Menindee option in that Lake Cawndilla is restored to a more natural cycle of wetting and drying. Implementation of this option will involve the construction of a block bank and regulator across Morton

Boolka in order to fill Lake Menindee to its current capacity and allow volumes into Lake Cawndilla during times of floods.

Two variations of this saving option were modelled:

- i) The first with the existing outlet regulator for Lake Menindee.
- ii) The second with an increased Menindee regulator outlet capacity of 10,000 Megalitres per day.

The second run tries to compensate for the reduction in available outlet capacity as a result of the more natural wetting and drying of Lake Cawndilla.

3.2.6 Construction of a Two Menindee Lake Cells (Both Filled)

Splitting of Lake Menindee into two cells with appropriate regulators or pumps to allow efficient filling and emptying of each cell potentially allows for increased operational flexibility. For the purposes of modelling, it has been assumed that each cell can hold fifty percent of the existing lake storage volume for fifty percent of the existing lake storage area. This means that the storage volume area relationship for each cell is effectively half that of the total lake relationship. Target storage operation of the scheme and draw down of Lake Cawndilla via the existing Menindee outlet regulator remains unchanged when the lakes are connected.

Modelling has also assumed that draw down of each Menindee Lake cell is able to be achieved using the existing Menindee outlet regulator. However, construction of the two cells will result in the outlet being able to deliver the same discharge for half the existing volume. Consequently, the existing Menindee outlet regulator storage volume versus discharge relationship was adjusted to cater for this as shown in Figure 6.

Figure 6 – Existing and Adjusted Menindee Outlet Capacity Relationship

3.2.7 Construction of a Two Menindee Lake Cells (One Filled)

Under this option only the half of Lake Menindee is used to store water, whilst the other half is restored to a more natural cycle of wetting and drying. The option still involves the construction of two cells, with the cell that is connected to Lake Cawndilla via Morton Boolka being filled.

3.2.8 Increasing the Capacity of Lake Pamamaroo

With appropriate target storage operation, creation of additional storage capacity in Lake Pamamaroo has the potential to reduce storage volume and storage durations in the more inefficient lakes. In modelling this option it was assumed that filling of Lake Pamamaroo to its new full supply level utilised the existing lakes filling sequence.

In increasing the lake capacity, the surcharge level of Lake Pamamaroo was raised by 0.8 meter to give a total capacity at an RL of 62.3 metres of 390 Gigalitres. This represents an increase in Lake Pamamaroo capacity of approximately 40 Gigalitres. Filling of this additional storage was achieved in the model through surcharging of Lake Wetherell. This surcharging increases the capacity of Lake Wetherell from 195 to 262 Gigalitres. In increasing the capacity of Lake Pamamaroo, the surface area was assumed to remain unchanged from the existing full supply level.

In modelling this option, the Pamamaroo regulator outlet capacity was increased in recognition of the additional available head created through increased lake capacity.

3.2.9 Potential Water Savings from Privately Owned Storages

As indicated in Table 1, the evaporative losses associated with off river dams such as ring tanks are quite large in comparison to major dams. A number of preliminary modelled case studies in the Namoi Valley were undertaken to assess potential water saving strategies from reduced evaporation from off-river storages. These consisted of:

- i) Purchasing all supplementary water licenses. Supplementary water is unregulated water in excess of releases from Keepit and Split Rock Dams.
- Removal of all off-river storages and increasing storage capacity in Keepit and Split Rock Dams. Capacities for Split Rock and Keepit Dams were increased to 1,000 Gigalitres each.
- iii) Stopping of evaporation from on farm storage through surface covering.

3.3 Description of Non-Modelled Water Saving Options

3.3.1 General

As stated in Section 3.1, some options cannot be modelled, but still require assessment with respect to potential water savings. Key non modelled options for which potential water savings have been assessed using observed data on flows, losses and infrastructure performance are:

Key Non Modelled Options

- > Improved extraction from residual pools in the Menindee Lakes Scheme.
- Improved use of existing smaller deeper lakes in the Menindee Lakes Scheme.
- Utilisation of existing and new storages upstream of the Menindee Lakes Scheme.
- Utilisation of existing and new storages downstream of the Menindee Lakes Scheme.

3.3.2 Improved Extraction from Residual Pools

The current distribution of residual storage in the Menindee Scheme is presented in Table 4.

Dead Storages	RL (m)	Residual Volume (ML)
Lake Balaka	61.50	1,200
Lake Malta	61.75	350
Lake Bijijie	61.00	900
Lake Tandure	57.80	9,448
Lake Wetherell	52.50	478
Lake Wetherell Total		12,376
Lake Pamamaroo	56.50	28,930
Lake Copi Hollow	58.35	2,800
Lake Pamamaroo Total		31,730
Lake Menindee	56.00	60,860
Lake Speculation	59.50	10,330
Lake Cawndilla	54.50	100,970
Total Residual Storage		216,266

Table 4 – Advised Residual Storage Volumes

As discussed in section 3.2.2 differences exist between the residual storage volume assumed in the modelled base case and the volume provided by DNR. In addition, the modelled frequency of access to residual pools is also likely to be different to that which is observed in practice. Any calculation of saving volumes and strategies will need to recognise these two issues.

An indication of the frequency of time that each lake spends in the residual pool zone based on the advised pool volumes and model results is shown in Figures 7. As can be seen, all lakes are above the residual pool zone for the majority of time.

Figure 7 – Frequency of Lake Residual Storage Volume Exceedence

Improved access to residual storage volumes is likely to deliver only small long-term water savings. However, the years in which access takes place are drought years

therefore the importance of these volumes cannot be understated. An approximate indication of when these opportunities arise can be seen from the variation in total scheme volume over the long-term. This is shown in Figure 8.

Figure 8 – Approximate Opportunities for Residual Pumping Over Time

3.3.3 Improved Use of Existing Smaller Deeper Lakes

There are a number of smaller lakes with the Menindee scheme that may be utilised more efficiently, through surcharging or increasing capacity. Use of these smaller deeper lakes as opposed to the wide shallow main lakes in times of low volumes and high demands may result in small water savings.

3.3.4 Use or Creation of Upstream Storage Capacity

Instream in The Upper Darling and Floodplain Storage at Menindee

An evaluation of the potential instream storage capacity in the Darling River above Menindee was undertaken using channel capacity and longitudinal survey section information for the Darling River.

An assessment of the volume of available storage resulting from the raising of Bourke Weir was made. Bourke was selected as information on channel cross section and longitudinal profile was available. In reality implementation of an instream storage option may need to occur closer to the Menindee Scheme to ensure that water can be moved from the inefficient lakes into the instream storage in times of drought operation. It is likely that the instream storage characteristics will remain unchanged.

The variation of storage volume with weir crest height is presented in Table 5. Construction of an impoundment with a crest level approaching the top of bank with a suitable regulator will lead to creation of 46 Gigalitres of storage occupying a surface area of 2,676 Ha. The weir pool will extend 200 kilometres upstream to Brewarrina.

Comment	Crest Level (m)	Channel Area (Sqm)	Volume (GL)	Weir Pool Length (Km)	Surface Area (Ha)
Current Weir Hgt	4.9	168	4.8	86	443
	5	173	5.1	88	459
	6	227	8	105.6	591
	9	411	22	158.4	1077
Top Of Bank	12	652	46	211.2	2677

Table 5 – Bourke Instream Storage

From a water saving perspective the small surface area of this additional storage offers advantages over the storing of an equivalent volume in the shallower more expansive Menindee Lakes.

Given that instream storage only offers small additional volumes, creation of additional floodplain storage in the immediate vicinity of the scheme to complement this instream storage was also assessed. In order for floodplain storage to be efficient, storages have to be deep. Typical ring tank depths are in the order of 3 metres, with depths to 6 metres also possible. The equivalent ring tank surface area for 150 Gigalitres of instream storage is presented in Table 6 for ring tank storages of 3 metres to 6 metres depth.

Storage Depth (m)	Surface Area (Ha)
3m	5,000
4m	3,750
5m	3,000
6m	2,500

Table 6 – Bourke Ring Tank Storage

Use of Existing Tributary Storages

The storage of water in dry times in existing or enlarged upstream storages in the New South Wales tributaries of the Darling as opposed to Menindee Lakes potentially offers water savings through reductions in evaporative losses. As discussed in Section 1.1 and shown in Table 1 upstream major dams have considerably less evaporation than that of the Menindee Scheme.

However, only a limited number of upstream storages can be used to supply Lower Darling water users. Limitations are primarily due to channel capacity constraints or the large flow reductions caused by flows passing through terminal wetlands. On the basis of this and discussions with NSW State Water staff, possible locations for storage and supply of Lower Darling volumes are :

- Keepit Dam on the Namoi River,
- Chaffey Dam on the Peel River,
- Pindari Dam on the Macintyre River.

Based on Table 1, it is likely the losses associated with evaporation will be considerably less than those at Menindee. However, this saving in volume may be potentially offset by the losses associated with delivering volumes to the Lower Darling. This is especially the case if delivery takes place during the summer months after a prolonged period of low to no flows.

It is important to note that delivery "losses" may have some environmental benefit. This should be borne when evaluating the relative merits of water savings strategies at the Menindee Scheme and upstream.

In order to gain an appreciation of the size of the losses associated with delivery of water from tributary storages to the Lower Darling, an analysis of the losses associated with small flow event releases Keepit Dam along the Namoi and Barwon Darling river systems has been undertaken.

Small flow events, at times when there is negligible irrigation extraction and ungauged tributary inflow are rare. Consequently, only a limited number of events were available for the analysis.

3.3.5 Use or Creation of Downstream Storage Capacity

Instream Storage in the Lower Darling

An evaluation of the potential instream storage capacity in the Darling River below Menindee was undertaken using channel capacity and longitudinal survey section information for the Darling River.

An assessment of the volume of available storage resulting from the raising of Burtundy weir was made. The variation of storage volume with weir crest height is presented in Table 7. Construction of an impoundment with a crest level approaching the top of bank with a suitable regulator will lead to creation of only 5 Gigalitres of storage with a surface area of 400Ha. The weir pool extends approximately 80 kilometres upstream.

Comment	Crest Level (m)	Channel Area (sqm)	Volume (GL)	Weir Pool Length (Km)	Surface Area (Ha)
Current Weir Hgt	1	6.5	0.0	17.6	37.4
	2	37	0.4	35.2	122.1
	3	74	1.3	52.8	209.9
	4	116	2.7	70.4	309.1
Top Of Bank	5	162	4.7	88	414.4

Table 7– Burtundy In-stream Storage

Instream Storage in the Murray

There is potential to store a volume of water through utilisation and enhancement of the existing Locks on the Murray River downstream of Wentworth. Use of this storage may mitigate the impacts of reduced storage volumes at the Menindee Lakes Scheme. The locks are currently operated in non flood times to maintain a fixed river level irrespective of flow. There is the potential to vary the operation of the locks to increase the instream storage downstream of Menindee. A one metre increase in water level at each lock equates to approximately 100GL. Varying the water levels in each of the locks is likely to have environmental benefits if the variation mimics some aspects of the natural behaviour. There is also potential for storage at Chowilla or surcharging the existing lakes

4 DISCUSSION OF MODELLED RESULTS

4.1 General

Detailed results for each key modelled option are included in the Appendices to this report. In the following sections, summaries of evaporative savings, together with diversion, flow and salinity changes are presented. The following nomenclature has been adopted for describing modelled water savings options that have their genesis at the Menindee Lakes Scheme.

Base Case	The base case (current operation and development)
MO	Rapid emptying of the Scheme in the range of 480GL to 200GL
M1	Rapid emptying of the Scheme in the range of 480GL to 300GL
M2	Rapid emptying of the Scheme in the range of 680GL to 100GL
M3	Rapid emptying of the Scheme in the range of 300GL to 100GL
NoMC	More natural wetting and drying of Lake Menindee and Lake Cawndilla
NoCExMO	More natural wetting and drying of Lake Cawndilla
NoCEnMO	More natural wetting and drying of Lake Cawndilla
NoMExCO	More natural wetting and drying of Lake Menindee
NoMEnCO	More natural wetting and drying of Lake Menindee
MCell	Construction of two Menindee Lake cells
0.5M	Construction of a two Menindee Lake cells (One Filled)
PInc	Increasing the capacity of Lake Pamamaroo

4.2 Menindee Scheme - Potential Evaporative Savings

Evaporative savings for each of the key modelled options are presented in Table 8. The time series variation of evaporation for each option with respect to the base case is presented in Appendix 1. In recognition that the importance of evaporative losses is a function of the volume available in storage, the variation of evaporation volume as a proportion of the average annual storage volume is presented in Appendix 2 for each option.

Option	Wetherell Net Evap	Pamamaroo Net Evap	Menindee Net Evap	Cawndilla Net Evap	Total Net Evap (GL/Yr)	Decrease From Base Case (GL/Yr)
Base case	50	82	168	126	426	0
M0	62	77	128	105	372	-54
M1	64	81	133	108	387	-39
M2	55	69	117	95	335	-91
M3	69	81	143	113	406	-20
NoMC	117	94	5	0	215	-211
NoCExMO	80	91	183	0	353	-73
NoCEnMO	82	92	176	0	351	-76
0.5M	56	84	87	130	357	-70
NoMExCO	75	83	0	134	291	-136
NoMEnCO	83	92	0	118	292	-134
PInc	65	86	162	123	435	+9
MCell	50	82	130	123	388	-38

Table 8 – Key Modelled Options - Evaporative Savings (GL/Yr)

All but one of the key modelled options produces evaporative water savings. The exception is the Pamamaroo increased capacity option in which the savings created by increased storage in Lake Pamamaroo is more than offset by the additional evaporative losses incurred in Lake Wetherell. This is a consequence of Lake Wetherell storage volumes and inundated areas having to be increased in order to fill Lake Pamamaroo.

Restoration of Lake Menindee and Cawndilla to more natural cycles of wetting and drying result in the largest evaporative saving of any option. This is followed by restoration of Lake Menindee only. As discussed previously use of these Lakes for flood mitigation purposes would reduce these saving volumes.

Options which seek to increase the release rate from the lakes when in New South Wales control, and thereby reduce the time that water spends within the scheme also produce substantial savings. In general approximately 100 to 200 Megalitres per annum is saved for every Gigalitre of water that remains in New South Wales control below 680 Gigalitres.

A number of savings options have been assessed with differing regulator outlet capacity configurations. This was undertaken in an effort to ensure that downstream demand could still be met on a daily basis. These options produced almost negligible change in the evaporative savings volumes. This is thought to be due to the modelled target storage operation remaining unchanged from the base case, and the times when demands avail of this additional capacity being infrequent.

There is potentially some scope to for further efficiency gains through optimising scheme operation for each of the modelled options. However, changing the assumed target storage operation within the model in order to better utilise the lakes for each water saving option requires modification to the source code within MSM. This was not possible as a consequence of the short study timeframes. However, this should be addressed during the more detailed second phase of the project.

4.3 Consequences of Menindee Scheme Savings

4.3.1 Longterm Average Diversion Change and Reliability

Any option that seeks to reduce the storage time or storage volume within the lake scheme is going to result in changes to average downstream diversions and reliability. Impacts on average diversions for each option are presented in Table 9. Changes in both the magnitude of peak shortfalls and their frequency are presented in Appendix 3 as part of the summary outputs for each option. Exceedence curves of changes in the Lower Darling, and New South Wales, Victorian and South Australian Murray Diversions are presented in Appendix 4. Time series of annual diversions are presented in Appendix 5.

Modelled options produce substantially larger average and inter year impacts upon Lower Darling Diversions than for Murray River Diversions. In general, average and inter year diversions for New South Wales, Victorian and South Australian Murray users are only altered by small amounts. The largest impact on Lower Darling average diversions is for the restoration of both Menindee and Cawndilla to more natural cycles of wetting and drying. This option result in average diversion reductions in the New South Wales Lower Darling of 74%. The restoration of Lake Cawndilla to more natural wetting and drying also results in a substantial decrease in Lower Darling average diversions (53%) and increased spells of diversion shortfall years. This can be seen in the time series plots of annual diversions in Appendix 5. The option with the least impact on diversions and reliability is the construction of two cells in Lake Menindee.

Year	Total NSW Lower Darling Div (GL/Yr)	Decrease from Base Case (GL/Yr)	Total NSW Murray Div (GL/Yr)	Decrease from Base Case (GL/Yr)	Total Vic Murray Div (GL/Yr)	Decrease from Base Case (GL/Yr)	Total SA Murray Div (GL/Yr)	Decrease from Base Case (GL/Yr)
Base case	129		1966	0	1675		1139	
M0	119	-10	1979	13	1671	-4	1143	4
M1	121	-8	1986	20	1674	-1	1143	4
M2	112	-17	1969	3	1665	-10	1145	6
M3	124	-5	1979	13	1673	-2	1144	5
NoMC	32	-97	1922	-44	1636	-39	1141	2
NoCExMO	55	-74	1968	3	1670	-5	1142	3
NoCEnMO	55	-74	1969	3	1671	-4	1142	3
0.5M	116	-13	1968	2	1675	0	1142	3
NoMExCO	116	-13	1963	-2	1673	-2	1142	3
NoMEnCO	112	-17	1964	-2	1672	-3	1143	4
PInc	122	-7	1966	0	1675	0	1140	1
MCell	129	0	1966	0	1675	0	1139	0

Table 9 – Longterm Average Diversion Change (GL/Yr)

4.3.2 Flow Change

Flow changes resulting from key modelled options are presented in Tables 10 and 11. Specific examples of flow regime changes in the Darling at Wentworth and the Murray at Lock 7 are presented in the form of flow duration curves in Figures 9 and 10.

Figure 9 – Annual Flow Exceedence Curve (Darling River @ Wentworth)

Figure 10 - Annual Flow Exceedence Curve (Murray River @ Lock 7)

With the exception of the option of increased capacity of Pamamaroo, all options produce increased flows in the Lower Darling. Most options also reduce the volume of flow released and spilt from Lake Cawndilla. The exception is the option in which the Cawndilla outlet is enlarged. Under this option Cawndilla releases increase by 98 Gigalitres per annum.

Flows in the Murray upstream of Wentworth are largely unchanged by water saving options at Menindee. Although restoring Lakes Menindee and Cawndilla to natural wetting and drying cycles results in increases in Murray flows upstream of Wentworth of approximately 80 Gigalitres per annum.

Flows downstream of Wentworth generally increase in most options. This results in increased spills from Lake Victoria and a corresponding reduction in regulated releases. Flow across the South Australian border also increases.

An example of the variability of flows with respect to time for both the base case and the restoration of Lake Menindee too a more natural regime is shown in Figures 11 to 13. Further examples of the alteration to flow regimes for additional options are presented in Appendix 6. Options generally increase the frequency of over bank events in the Lower Darling but result in only minor changes in the Murray River flow regime.

It should be noted that the distribution of flows within the Anabranch or outflows from the Anabranch are not simulated in the version of MSM used for the first stage of this project. Refinement of options in further stages of this project should incorporate a more detailed analysis of Anabranch flows.

	Base Case	NoMC	PCI	0.5M	NoCExMO	NoCEnMO	NoMExCO	NoMEnCO	MO	M1	M2	M3
Lake Cawndilla Release (GL/Yr)	139	0	134	132	0	0	104	237	110	113	103	118
Lake Cawndilla Spill (GL/Yr)	11	0	0	18	0	0	0	0	11	11	10	11
Weir 32 Flow (GL/Yr)	1671	1968	1670	1751	1815	1817	1812	1817	1735	1718	1780	1697
Burtundy Flow (GL/Yr)	1158	1333	1144	1209	1235	1237	1241	1246	1223	1206	1268	1186
Darling U/S Wentworth (GL/Yr)	1140	1315	1126	1191	1217	1219	1223	1228	1205	1188	1250	1168
Murray U/S Wentworth (GL/Yr)	6062	6144	6062	6061	6066	6065	6068	6068	6055	6047	6070	6053
Lake Victoria Spill (GL/Yr)	4218	4867	4209	4324	4494	4495	4700	4705	4317	4287	4390	4253
Lake Victoria Release (GL/Yr)	248	232	244	230	207	206	195	188	242	250	238	251
Lock 7 (GL/Yr)	6460	6704	6447	6505	6533	6534	6541	6545	6516	6492	6576	6479

Table 10 – Average Annual Flows (GL/Yr)

Table 11 – Increases in Average Annual Flows from Base Case

	NoMC	PCI	0.5M	NoCExMO	NoCEnMO	NoMExCO	NoMEnCO	MO	M1	M2	M3
Lake Cawndilla Release (GL/Yr)	-139	-5	-7	-139	-139	-35	98	-29	-26	-36	-21
Cawndilla Spill (GL/Yr)	-11	-11	7	-11	-11	-11	-11	0	0	-1	0
Weir 32 Flow (GL/Yr)	297	-1	80	144	146	141	146	64	47	109	26
Burtundy Flow (GL/Yr)	175	-14	51	77	79	83	88	65	48	110	28
Darling U/S Wentworth	175	-14	51	77	79	83	88	65	48	110	28
Murray U/S Wentworth	82	0	-1	4	3	6	6	-7	-15	8	-9
Lake Victoria Spill	649	-9	106	276	277	482	487	99	69	172	35
Lake Victoria Release	-16	-4	-18	-41	-42	-53	-60	-6	2	-10	3
Lock 7 Flow (GL/Yr)	244	-13	45	73	74	81	85	56	32	116	19
Evaporative Saving At Menindee (GL/Yr)	211	-9	70	73	76	136	134	54	39	91	

Bas	Sase Lase NOMIExCU Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun 99192 16700 10000 20037 27433 00000 25733 17357 9167 1667 167 233 357 15000 16667 21533 27400 31000 26200 15000 6667 1767 167 667 2533																							
1891/92	Jul 16700	Aug 19000	Sep 20367	27433	N0V 30900	Dec 25733	Jan 17367	Feb 9167	Mar 1867	Apr 167	May 233	Jun 367	Jul 16300	Aug 18667	Sep 21533	27400	N0V 31100	Dec 26200	Jan 15000	Feb 6567	Mar 1767	Apr 167	May 667	Jun 2533
1892/93	533	5300	5800	6100	11900	16367	17600	15833	10667	12767	18167	19367	5133	7500	6067	6367	11967	16633	18300	12433	11200	15233	18767	20067
1893/94	20100	21133	27967	34500	31167	20967	11767	4233	767	2767	11933	19033	20000	21167	28067	34733	31533	20900	8300	2467	833	6933	14500	19433
1895/96	467	433	400	200	4367	7667	7467	3000	233	233	200	200	167	167	133	67	1167	4767	4733	4467	2033	2533	2633	800
1896/97	167	167	133	5100	8233	6867	4967	3200	1167	200	200	167	167	167	133	4867	5900	3367	2467	2267	1000	200	200	167
1897/98	200	267 167	267	167	5067 4600	7033	3400 2767	1200	467 233	233 267	200	167 167	167	300	267	133	5033 4533	7333	4800	4067	2000	2567	1633	167 167
1899/00	167	167	100	100	133	67	167	167	33	167	200	200	167	267	233	133	133	67	167	133	0	167	200	200
1900/01	167	200	133	100	2867	5700	3933	1100	233	167	33	-33	167	200	867	567	2833	6033	4200	1900	767	233	100	122
1902/03	167	167	133	100	67	67	-33	-67	-67	-67	100	167	133	167	133	67	-67	-67	-100	-67	-67	-67	100	167
1903/04	167	167	133	133	9167	15567	13233	4500	300	200	367	467	167	167	1067	8133	14533	17167	12767	4200	467	1167	4300	3267
1904/05	1500	300	2200	106/	4467	6900	5000	2900	233	233	233	233	233	3533	233	1167	3500	4833	2767	1833	233 467	233	233	200
1906/07	167	300	300	133	167	133	3467	2300	1033	800	200	200	167	200	167	100	3433	2433	3267	3633	3200	2200	1533	800
1907/08 1908/09	167 167	333 333	267 267	5100 133	7100 5000	4933 6867	2267 4733	633 1700	233 267	233 267	233 233	200 233	167 467	333 200	233 133	4633 133	5000 4633	2700 6167	1667 3800	700 1900	233 633	1400 267	3500 233	2300 200
1909/10	167	167	133	100	633	2267	1400	200	333	233	233	200	167	300	267	133	633	3567	2200	833	3867	5067	7467	3800
1910/11	367 500	467 600	433	367	367 7733	5167 5600	7867	3167	1933	10333	10833	3067	767	3000	2167	367 1367	167	4733	4167	967 1733	8367 533	15200	11567	2700
1912/13	167	200	133	100	233	3767	3733	1067	333	167	100	133	0	100	133	100	233	3767	3767	1100	333	167	100	100
1913/14	167 167	233	267	533	4433	6267 167	4100	1300	300	267	200	167	133	3533	2733	467	4400	5400 167	2967	1467	567 233	233	200	167
1915/16	0	0	67	100	-67	-67	-100	-67	-67	67	200	200	0	33	167	167	0	-67	-100	-67	-67	33	167	200
1916/17	200	200	200	267	5100 8100	7067	9167	12833	10533	12100	9333	2100	200	200	2033	10200	10833	7033	8967	12667	14833	15433	9600	1967
1918/19	433	467	400	200	100	5067	8000	3200	233	233	267	200	167	167	133	100	100	4233	4200	2067	800	233	267	133
1919/20	167	267	233	300	233	133	33	-67	-67	-33	-33	-33	0	0	-67	-67	-67	-100	-100	-67	-67	0	0	0
1920/21	2000	11467	19767	25133	33833	22500	14767	2353	3733	267	200	233	5767	13800	20100	26867	33967	22933	10033	7800	6967	2200	200	200
1922/23	167	167	100	1067	5700	7933	6033	3433	1067	200	200	200	167	167	100	100	4500	4433	2033	967	167	-67	0	0
1923/24	167	67 167	133	6/ 100	153	167	200	33 767	∠33 600	207 233	200 233	200	0 133	67 167	33 133	53 100	167	167	8233	33 8267	∠33 1967	207	200 233	200
1925/26	200	333	233	100	3100	6867	6800	2467	267	300	267	200	200	200	133	100	167	4633	4933	4500	2233	300	267	333
1926/27 1927/28	167 167	300 267	233 267	100 1833	100 1200	5067 133	ь/33 167	2433 267	233 267	233 233	200	167 167	2067 167	1633 267	333 233	100 1967	100 1300	4833 133	4967 167	2267 267	800 267	233 233	200 200	167 167
1928/29	200	133	100	2967	2833	5600	6467	2267	233	267	200	133	200	3833	6400	2600	200	4967	4867	2267	867	267	200	133
1929/30 1930/31	167 133	267 200	267 133	2667 167	1800 133	200 200	167 167	233 200	100 300	100 333	67 233	67 233	167 187	267 200	233 133	2800 167	1867 133	200 200	167 2600	233 1800	233 300	233 333	200 233	200 233
1931/32	167	8967	15200	11267	5300	5867	7800	3400	267	300	233	200	5933	13567	18200	13500	3100	2700	6733	3400	267	300	233	200
1932/33	167 167	167 287	167 287	100	167 1300	4800 1167	5000 5267	1433 3333	233	267 267	200	167 133	167	167 287	167 287	100	167 1300	4133 1300	4300 6967	1233 5200	233	267	200	167 133
1934/35	167	167	133	300	1/6/	2867	1333	3200	2167	300	367	433	16/	16/	100	2800	3900	3533	1500	3/33	5933	2500	200	167
1935/36	467	433	233	133	133	4233	2867	200	233	233	233	200	167	300	233	133	133	2867	2033	200	233	233	233	200
1937/38	167	267	267	2800	1767	133	133	167	167	133	200	67	167	267	267	3267	2067	133	133	233	200	233	167	133
1938/39	200	167	100	167	67	100	100	300	300	267	233	200	200	167	100	167	67	67	100	300	300	267	233	200
1939/40	167	167	100	67	133	100	267	1433	1067	233	200	467	167	267	20/	67	133	100	2267	3067	7400	6767	7033	3233
1941/42	467	600	500	200	3667	6400	5667	2167	233	267	267	233	633	600	233	567	4333	4533	2433	1333	400	200	233	233
1942/43 1943/44	200	267	267 267	167 133	333 3167	5233 3133	8200	3367 233	200 233	267	200	167 200	200	167 333	133 267	133 133	600 3433	5400 4033	8200 1333	233	200	267	200	167 200
1944/45	167	167	100	100	100	133	167	233	233	233	200	200	167	167	100	100	67	133	167	233	233	233	200	200
1945/46 1946/47	167 167	167 167	133	100	533 167	2800	1800	267 -67	267 167	267 267	200	200	167 167	16/ 233	133 233	100	900 167	3933	2333	267 267	267 300	267	200 3900	200
1947/48	200	333	267	133	200	1767	5633	3033	233	300	200	167	600	333	267	100	200	1533	5567	3133	267	300	200	167
1948/49 1949/50	167 167	500 267	500 267	5233 167	8233 167	7267 200	5167 5133	1867 3433	333 367	267 333	267 9333	200	4133 167	9667 267	6300 233	2467 167	2533 167	3900 8133	4200 6800	1767 1367	333 2633	267 6033	267 12267	200
1950/51	16167	16733	20600	30500	37700	26067	28867	33433	20333	14867	12500	7500	17067	16533	20700	31133	37967	26467	29367	34067	20767	15167	12567	7300
1951/52 1952/53	4300 167	6067 367	9233 9433	8633	4767	5333	7700	3333 5233	267 267	300 1133	267 9500	233 9500	4167 167	6133 5067	9400 12767	9233 18200	3367	2133	5667 9433	2867	267 200	300 7300	267 13533	233 9633
1953/54	2500	467	433	400	367	167	2467	1733	900	767	200	167	2333	200	167	133	167	100	167	233	233	3500	3467	967
1954/55	167	3300	7133	8267 5733	7000	2700	9000	8233 3200	1533	9267	23167	15333	167 12367	167	4167	4367	2300	9067	14533	8700 3267	4200	10900	16600	16600
1956/57	43867	43733	46333	46067	29100	17067	14600	5833	833	267	200	167	43933	43533	46233	46200	29733	17533	10267	3167	1067	267	200	167
1957/58 1958/59	167 167	167 200	1433 167	5967 133	7833 233	5900 167	3500 1600	1167 1133	267 233	233	200	200 167	167 167	167 200	100 167	4133 133	4633 233	2967 167	2000	900 1467	200 233	133 2367	200 8700	167 6667
1959/60	167	300	1067	5700	4333	1000	4367	2833	233	267	267	200	1500	367	1133	733	67	667	3800	2333	233	267	267	200
1960/61	200	200	133	100	200	133	4100	2733	233	333	200	167	200	200	133	100	200	133	4100	2733	233	333	200	167
1962/63	467	633	533	367	5167	8267	5733	1767	233	300	400	2100	200	333	233	133	3000	5600	4400	1467	233	300	6733	8267
1963/64	9633	7700	2700	5467	4167	5900 2200	8233	7333	2767	300	200	167	10967	7700	3033	6267	3333	5100	7467	2867	200	300	200	167
1965/66	167	333	300	100	4300	4033	1933	2000	200	233	200	200	167	333	4200	100	1900	2200	800	233	200	233	200	200
1966/67	167	200	133	100	200	167	167	233	233	233	200	167	167	167	0	33	167	167	167	233	233	233	200	167
1968/69	167	200	133	100	167	167	255	200	400	267	233	200	167	200	133	100	167	167	255	200	400	267	233	200
1969/70	200	167	133	100	133	4067	4600	1433	233	300	200	167	200	167	133	100	133	4067	4600	1433	233	300	200	133
1970/71 1971/72	133 9233	267 5767	300 5067	133 4100	200 4067	133 2800	2300 833	1633 1367	10267	19433 267	19/67 667	13267 467	133 8767	300 5567	300 5333	133 4933	167 1967	133 300	2300 233	10667	1/200 800	21033 433	22933	13000
1972/73	167	333	5233	7900	5800	6833	7167	2733	267	300	200	200	167	333	233	4900	4900	6233	6900	2567	267	300	200	200
1973/74	200 5767	300 3100	300 2567	233 4500	∠333 6000	3967	12967	14400 667	20500	2/533 967	21533 2467	1500	200 5700	300	367	3/6/ 4667	3267	14800 700	12033 200	233	21067	1300	20967	5767
1975/76	467	633	533	433	1000	8200	5067	8933	16100	22267	39467	31933	300	367	267	300	200	5333	3467	9267	16633	22767	42200	32233
1976/77 1977/78	9600 15300	/367 10533	3633 2800	3300 5200	3200 8267	5867 8200	8100 6800	3367 2900	233 567	300 233	/167 233	13433 200	9667 14767	/633 11700	3800 2833	1300 4467	700 5167	3733 3633	6400 2600	2800 1367	233 567	8500 233	13167 233	12867 200
1978/79	200	200	333	5233	12333	14967	7400	1800	867	1033	667	233	200	2400	8333	12700	15000	11033	4333	1300	233	267	267	233
1979/80 1980/81	167 200	333 167	267 100	133 100	133 100	100 100	4600 0	3433 -67	467 100	333 233	233 233	200 200	167 187	167 167	133 100	133 100	133 0	100	4133 -100	3800 -67	900 100	333 233	233 233	167 200
1981/82	200	200	133	100	167	1267	900	200	267	233	200	167	200	200	133	67	167	2800	1900	200	267	233	1733	1167
1982/83 1983/84	133 2700	233 11100	3533	5367 14333	2833 11667	600 12067	33 12133	-67 8500	-33 8967	-33 13167	-33 9733	67 4033	133 9847	267 18500	233	4633 14867	4500 9567	1967 7933	667 10167	0 8967	0 12367	0	0 9867	67 4200
1984/85	1600	8100	14467	16933	13767	7833	7967	3400	300	233	233	200	1467	6833	13700	17500	12133	4500	6667	3300	233	233	233	200
1985/86	167	200	133	133	3267	4433	5400 200	2600	200	233	233	200	167	200	133	133	2600	2867	2433	1233	200	200	200	200
1987/88	200	200	167	67	100	200	133	200	267	233 267	267	200 533	200	200	167	200	100	200	133	233 200	207 267	233	267	9933
1988/89	6067	9833	4933	3367	3967	5333	6700	2833	367	300	433	7500	15833	11533	5367	4333	2300	2067	3433	1533	367	300	4533	11367
1989/90	13800 19133	15333 18467	13567	5500 17933	1800	5467 7833	7900 6267	3333 3300	200 1433	267 1833	8300 1033	15633 400	15333 20233	20433	13867	6400 17833	900 17167	2167 5167	5967 3267	3033 2133	200 233	267 267	9300 200	17033
1991/92	200	167	100	67	133	5100	6400	2200	200	267	267	200	200	433	267	67	133	4733	5267	1633	200	267	267	200
1992/93 1993/94	167 200	300 167	300 133	167 167	233 167	267 233	367 133	233 300	267 233	233 233	233 167	167 167	133 200	200 267	167 267	133 200	233 167	267 233	367 133	233 267	267 233	233 233	233 167	167 167
1994/95	167	167	100	100	167	67	233	733	567	1233	867	200	167	167	100	2167	1500	67	233	2667	1800	267	233	200
1995/96	167 10300	133 6000	133	133 #00	167 3300	167 2167	200	1100 3067	833	267 8267	200	3100 467	167	133 5800	133	133	167 1223	167 867	200	3400	6833 6067	4033	3100	10600 167
1997/98	433	467	367	5167	8233	7333	5367	3200	1100	267	200	133	167	333	267	1633	4033	3533	2000	900	167	0	33	133
1998/99	200	233	5933	13833	20033	22967	8700	1633 3400	267	233	367	467	200	167	9967	19000	22733	24033	5367 5800	233	267	2667	5233	2400
2000/01	407 1333	407 1667	400 1300	2533 700	4400 2033	0867 9067	0200 14167	3400 8500	∠33 4567	333 3000	400	407 600	200 3433	2500	133	633	200	4900 5767	12967	∠107 8733	233 9567	4033	0907 1433	500
2001/02	467	433	400	5233	7500	6000	6167	2733	233	267	200	167	167	167	133	933	2933	5133	3833	2133	867	267	200	167
2002/03	133	167	100	67	100	-67	-100	-67	-67	100	233	167	133	167	33	0	-67	-67	-100	-67	-67	100	233	167
						1	5000 -	- 2500	O ML/F	Dav		2	5000-35000) ML/D	av 🛛	>	> 3500	0 ML/	Dav					
·										~	_	-							.,					

Figure 11 – Base Case and NoMExCO Lower Darling Upstream Wentworth Weir

Bas	Base Case Jui Aug sep Oct Nov Uec Jan Feb Mar Apr May Jun Jui Aug sep Oct Nov Uec Jan Feb Mar Apr May Jun																							
1891/92	41133	60367 22467	71267 20822	64033	44800	29133	17567	10067	9300	7500	6200 26767	6000	41133	60067 27067	72167	64100	44967	29600	15367	7500	6200	4500	3100 27467	7067
1892/93	48400	23467	64600	71200	24800 64233	36500	1/833	9267	9300	7500	28000	44100	48400	55967	64700	20233 71400	24867 64500	36467	11200	6467	6200	14633	31400	40233 44533
1894/95 1895/96	53933 8167	69833 18900	82500 25833	101833 17567	109867 9000	74900 8067	19233 7233	9267 6467	9300 6200	7500 7100	6200 6200	6000 6000	54800	69967 18633	82500 25533	101900 17467	108467 6000	71933	17533 7233	6467 6467	7233 6200	11300 4500	10033 5900	8267 9100
1896/97	6700 3633	7333	7500	8800	6433 6000	7233	7233	6467 6467	6200 6200	4500	3100	3000	9900	7500	4900 13133	5700	6000	7233	7233	6467 6467	6200 6200	4500	3100	3000
1898/99	3633	13033	14133	6167	6000	7233	7233	6467	6200	4500	3100	8000	9800	14100	14133	6167	6000	7233	7233	6467	6200	4500	3100	6667
1900/01	23600	14967 33033	34800	5/00	6000	7233	7233	6467	6200	4500 4500	3900 3100	13967	23600	33033	35300	5700	6000	7233	7233	6467	6200 6200	4500 4500	4033	13967 2967
1901/02 1902/03	3567 3300	6767 2567	17433 2633	11867 2933	5800 3300	7233 3900	7233 4267	6467 4067	6200 4333	4500 4000	3100 3100	2867 3167	3567 3400	6767 2833	17633 2933	11967 3400	6000 3800	7233 4533	7233 4900	6467 4600	6200 4733	4500 4233	3100 3100	2900 2733
1903/04	18800	18600	16900	12333	13233	17000	16100	8133	6200	4500	3100	3000	17233	18600	17767	20067	18900	18833	15700	7833	6200	4500	3100	7633
1904/05	25200	20933 31967	22007	8267	6467	7233	7233	6467	6200	4500	3100	14267	25367	31967	20100	8233	5300	7233	7233	6467	6200	4500	3100	8000
1906/07 1907/08	30433 3633	38200 4133	42/00 7500	51933 6400	59533 6000	33367 7233	7233	6900 6467	9300 6200	7500 4500	6200 3100	3000	30467 7867	38133 10333	42/33 6867	52300 5700	63067	35900 7233	7233	6467 6467	6200 6200	4500 4500	3100 3100	7467 3000
1908/09 1909/10	3633 30400	5367 38733	12100 47867	8167 34133	6333 6000	7233 7233	7233 7233	6467 6467	6200 6200	4500 6567	6167 6200	23367 6000	5300 30400	8967 38800	12000 47967	8167 34167	6000 6000	7233 7233	7233 7233	6467 6467	6200 6200	4500 4500	5333 10100	23367 11267
1910/11	6733	8600	26300	27233	11000	10333	8067	10800	9300	10733	16933	24867	13733	18600	28100	27300	10600	7233	7233	8500	12667	18300	17900	24567
1911/12	29300 6767	10933	20700	11433	6167	7233	7233	6467	6200	4500	3367	7500	29067 3633	20507	20667	11433	6133	7233	7233	6467	6200	4500	3400	7500
1913/14 1914/15	7700 3633	5400 3733	5800 4033	5700 5000	6000 5333	7233 6500	7233 6667	6467 6133	6200 6100	4500 4500	3100 3100	3000 2833	7700 3633	8500 3700	8333 4000	5800 4967	6000 5300	7233 6467	7233 6633	6467 6067	6200 6033	4500 4500	3100 3100	3000 2867
1915/16 1916/17	19233 14433	29133 32733	32433 41400	29833 49400	10733	6800 57467	7233 37233	6467 22333	6200 14067	4500 15233	3100 19733	2833 35333	19233 14967	29167 32733	32500 42733	29900	10767	6833 57967	7233	6467 22200	6200 18100	4500 18633	3100 20200	2867 35233
1917/18	55833	90400	128867	166267	185133	144900	57033	24300	14233	7933	25433	36000	55600	90033	128567	165933	183333	142433	56100	25067	19000	10400	25467	35767
1910/19	7000	5200	4500	5700	6000	990/ 7233	7233	6467	6200	4500 4500	3100	3000	46/00	5467	4500	5700	6000	7233	7233	6467	6200 6200	4500 4500	3100	3000
1920/21 1921/22	9867 15633	28967 37933	44300 52267	52433 62000	38533 56533	20700 30100	10333 15300	9267 11900	9300 9300	7500 7500	6200 6200	3000 6000	9900 23633	35900 39833	50033 52767	55100 63400	39633 56367	15667 30167	7233 10733	6467 8767	6200 7067	4500 4500	3100 5633	10633 6833
1922/23 1923/24	6733 29333	7233	15267	8800 33367	8367 20000	7233	7233 7233	6467 6467	6200 6200	4500 4500	3100 3100	6367 5667	7900 26767	13200	18000	7900	6000 19533	7233 7500	7233 7233	6467 6467	6200 6200	4500 4500	3100 3100	6533 5567
1924/25	8800	17867	31167	36067	37133	34367	14433	9267	9300	7500	6200	5000	8800	17533	30933	35733	36333	32900	20600	13233	6200	4500	3100	11100
1925/20	25067	33233	36633	23033	12633	7633	7233	6467	6200	4500	12533 3100	3000	26167	34300	36867	23000	12633	7233	7233	6467	6200	4500	3100	3000
1927/28 1928/29	3633 20133	4200 12167	6600 7500	5700 8800	6000 8500	7233 7267	7233 7233	6467 6467	6200 6200	4500 4500	5133 3100	18733 6267	3633 20133	4133 15633	5567 10633	5700 11833	6000 6000	7233 7233	7233 7233	6467 6467	6200 6200	4500 4500	5033 3100	18733 4567
1929/30 1930/31	7900 3622	6733 7233	6300 10100	5700 8967	6000 6100	7233 8467	7233 7233	6467 6467	6200 6200	4500 4500	3100 24000	3000	7900	6767 7433	6300 10100	5700 9087	6000 6333	7233 8433	7233	6467 6467	6200 6200	4500 4500	3100 25387	3000
1931/32	61633	97500	104900	74467	34300	10333	10333	9267	9300	7500	7467	22133	66233	102067	108067	76633	32400	7233	7233	6467	6200	7467	15233	22133
1932/33 1933/34	30/33 7233	36667 18833	40300 24533	38867 12333	15967 6000	7007 7233	7233 10067	9267	6200 9300	4500 7500	3100 6200	3000 5700	30733 6500	36667 18833	40333 24533	38900 12333	6000	7233 7367	7233 10167	6467 8833	6200 6600	4500 7100	3100 8033	3000 5733
1934/35 1935/36	3633 27800	9900 36933	24567 45767	33800 46333	41233 26233	44400 8533	26033 9000	9267 6467	9300 6200	7500 4500	6200 3100	18000 3000	/96/ 27500	16400 36833	24567 45767	35600 46333	43000 26233	45033 7233	26233 8133	8500 6467	7467 6200	8067 4500	14033 3100	18267 3000
1936/37	17667	32667	39600	24433	6000	7233	7233	6467 6467	6200 6200	4500	3100	3000	17633	32667	39600	24433	6000	7233	7233	6467 6467	6200 6200	4500 4500	3100	3000
1938/39	3633	3733	4133	5400	5800	7100	7133	6233	6200	11167	21200	26933	3633	3733	4100	5367	5767	7100	7100	6167	6200	11000	21233	26933
1939/40 1940/41	34867 3633	42967 3900	51433 4267	51900 5533	41433 6000	16800 7233	7233 7233	6467 6467	6200 6200	4500 4500	3100 3100	3000 3000	34867 3633	43200 3900	51967 4300	52300 5567	41533 6000	16800 7233	7233 7233	6467 6467	6200 6200	4500 6700	3100 11667	3000 9900
1941/42 1942/43	3633 32667	6933 36633	7000	4833 23267	5133 6000	6600 7233	6933 7233	6467 6467	6200 6200	4500 4500	9067 3100	21267 3000	9100 32667	8700 36567	6633 36167	4800 23100	5533 6000	7133 7233	7233 7233	6467 6467	6200 6200	4500 4500	3200 3100	21200 3000
1943/44	6067	7967	9833	5967	6000	7233	7233	6467	6200	4500	3100	3000	5967 5267	8000	9833	5933 5087	6000	7233	7233	6467	6200	4500	3100	3000
1945/46	3733	8500	7933	4833	2900	3867	4133	5400	4633	5167	5767	6767	3767	8500	7933	4800	3067	4133	4533	6467	4633	5233	5800	6767
1940/47 1947/48	14900 5867	23900 23133	12867 26167	4/6/ 22700	5500 12500	7255 7467	7233	6600	6200 8900	4500 4500	3100 3100	2967 5833	14933 13833	23967	13000 26167	4700 22667	5433 12433	7233	7233	6467	6200 6200	4500 4500	3100	3000 8833
1948/49 1949/50	11167 7367	7233 7200	7500 7800	8800 16567	9000 23367	7700 10100	7233 10333	6467 9267	6200 9300	4500 21200	3633 40833	7233 42200	14933 7367	15567 7233	9200 7733	5700 16533	6000 23300	7233 17533	7233 8267	6467 8567	6200 13733	4500 27133	3100 43267	6367 43167
1950/51 1951/52	38033 35233	39800 44433	46100 50933	48600 45200	53900 28600	45000	33800 9433	35567	23200 6200	18100 4500	21300 7567	30733	38767	39767 44567	46133 51400	49100 46000	54167 27467	45333 7233	34200	36067	23700 6200	18400 4500	21367 7200	30533 33133
1952/53	53200	75900	86967	87467	86733	75000	46200	13033	9300	7500	6200	13700	53200	79567	89867	88600	87767	75233	42700	9400	6200	4500	17233	18767
1954/55	6733	7233	7500	8800	8967	14867	13933	13167	9300	8867	22600	32300	7133	6267	8900	8133	8033	20567	19533	13933	8333	14067	23233	33367
1955/56 1956/57	39400 189600	58700 237067	99200 251467	129000 213333	111300	62100 96200	19500 34433	9267 9667	2416/ 9300	47733	6200	3667	39533	236933	99333 251400	213433	109800	96667	18633 30367	6900	27033 6200	4/86/ 4500	3100	3000
1957/58 1958/59	6733 9167	7233 33067	7500 43200	7700 45067	6000 38933	7233 21533	7233 7233	6467 6467	6200 6200	4500 4500	3100 5200	3000 4667	8633 7667	9633 33067	5833 43267	5700 45133	6000 38867	7233 21267	7233 7233	6467 6467	6200 6200	4500 4500	3100 12067	3000 13433
1959/60 1960/61	6733 30833	7233	7500 51800	8800 61100	9000 53233	7800 19533	7767 7233	6467 6467	6200 6200	4500 4500	9300 5167	26300 7067	7833 30833	5600 37933	5633 51800	7533	7267 53233	7233 19533	7233 7233	6467 6467	6200 6200	4500 4500	8767 5167	26300 7067
1961/62	10433	17567	18300	12733	6000	7233	8733	6467	6533	7500	6200	6000	10433	17600	18300	12733	6000	7233	9300	6467	6667	13000	15500	14133
1963/64	23833	32967	25800	20500	10233	10333	10333	9267	9300	7500	6200	3000	29533	33033	26100	21533	9667	7233	7233	6467	6200	4500	3100	9333
1964/65 1965/66	22267 3633	3/200 8233	43667 20800	51567 10200	62133 6000	42033 7233	10333 7233	8533 6467	6267 6200	4500 4500	3100 3100	3000 3000	25567 3633	39067 8300	46767 20800	53800 10200	62767	41733 7233	7233 7233	6467 6467	6200 6200	4500 4500	3100 3100	3000 3000
1966/67 1967/68	7467 3633	11467 4133	22200 4500	19000 5700	8167 6000	9933 7233	7233 7233	6467 6467	6200 6200	4500 4500	3100 4300	3000 24700	5100 3633	11433 4133	22067 4500	18933 5700	8133 6000	9933 7233	7233 7233	6467 6467	6200 6200	4500 4500	3100 4300	3000 24767
1968/69	30233	31467	31500	15133	6000	7233	7233	6467	6200	5167	10633	10400	30233	31467	31500	15133	6000	7233	7233	6467	6200	5200	10633	10400
1970/71	18067	28000	43200	56100	51867	23233	7233	7667	16867	26867	32133	27000	18067	2410/ 28033	43200	56100	51867	23233	7233	13500	26567	28767	34600	27100
19/1/72 1972/73	23133 3633	19833 5800	2/100 6267	2/533 5700	31800 6000	29600 7233	10333 7233	9267 10233	9300 7367	7500 9667	6200 17500	3000 23633	22700 3633	19633 6067	2/333 4500	28333 5700	30033 6000	2/267 7233	9267 7233	6467 8667	6200 7333	4500 9667	3100 17500	3000 23633
1973/74 1974/75	29233 67567	38633 73333	55033 112167	78567 146267	83800 155400	45833 115900	31467 29467	27167 9267	26733 9300	41300 7500	56200 6200	66833 6000	29233 67533	39133 73233	56133 112200	83567 146367	92500 153433	49800 113033	31700 28333	26867 6467	27267 6200	43600 4500	56267 5933	66733 12667
1975/76	8867 16900	32067	56467	94167 8900	135433	132567	51367	15567	16500	23733	41133	38767	16967	36100	56233	94000	134867	130400	49900	15733	17000	24200	43133	39300
1977/78	28000	19733	8133	8800	9000	7667	7233	6467	6200	4500	3100	7533	28733	20833	8267	5700	6000	7233	7233	6467	6200	4500	3100	3000
1978/79 1979/80	∠3233 3633	32200 4133	35100 15633	37600 30633	35033 30033	22700 7333	10333 7233	9267 6467	9300 6200	7500 4500	6200 3100	3000 3000	23033 5500	33767 4933	41100 20700	43967 30600	38200 29967	19467 7300	7233 7233	6467 6467	6200	4500 4500	3100 3100	4433 3000
1980/81 1981/82	9500 31867	14400 58600	11467 91700	6100 83167	6000 28133	7233 7233	7233 7233	6467 6467	6200 6200	4500 4500	3100 3100	3633 3000	9767 31900	14400 58600	11467 91700	6100 83167	6000 28133	7233 7233	7233 7233	6467 6467	6200 6200	4500 4500	3100 3100	3667 3000
1982/83 1983/84	3633 20200	4133 37787	4500	5700	6000 29900	7233	7233	6467 17233	6200 14287	4500	3100	4567	3633	4133	4500	5700	6000	7233	7233	6467 17487	6200 17433	4500	3100	4333
1984/85	8067	31500	48567	58367	47967	16333	10333	7467	6200	4500	3100	3000	7967	30333	48000	58833	47000	13067	7233	6467	6200	4500	3100	3000
1985/86 1986/87	3633 21500	16700 37133	24867 38833	11100 37467	6000 30967	7233 16067	7233 7233	6467 6467	6200 6200	4500 4500	3100 3100	3000 3467	3633 18300	19533 37200	24867 38933	11067 37500	6000 30933	7233 16033	7233 7233	6467 6467	6200 6200	4500 4500	3100 3100	3000 3467
1987/88 1988/89	24533 30967	31100 38433	21733 34567	6667 18967	6000 9500	7233 10333	7233 10333	6467 6467	6200 6200	4500 10100	3100 29667	9033 41933	24533 38567	31100 40800	21733 35100	6667 19967	6000 8000	7233 7233	7233 7233	6467 6467	6200 6200	4500 8700	3100 33167	17867 45100
1989/90 1990/01	52200 44500	57833 61733	60700 75133	50867 71500	24067	10333	10333	8933 9267	6200 9300	4500 7500	8467 6200	25833	53767	58600	61100 75067	51900 71433	23800	7233	7233	6467 6467	6200 6200	4500 4500	11133	28600 3000
1991/92	5600	20033	34367	38500	19633	7600	7233	6467	6200	4500	3100	3833	7967	24767	34500	38533	19633	7233	7233	6467	6200	4500	3100	3000
1992/93 1993/94	8967 25900	15467 36567	33500 55400	52533 91133	78300 111033	83867 74500	48433 14833	12667 6467	6200 6200	4500 4500	9367 3967	11133 6733	8100 25933	15367 36633	33333 55500	52400 91133	/8100 111033	83900 74500	48533 14833	12700 6467	6200 6200	4500 4500	9367 3967	11167 6733
1994/95 1995/96	8500 30567	5433 42167	4500 38000	5700 17000	6000 9433	7233 7233	7233 7233	6467 6467	6200 6300	4500 7500	3100 6200	14467 5900	8500 31933	5433 42167	4500 38200	5700 17500	6000 9567	7233 7233	7233 7233	6467 6467	6200 6200	4500 4500	3100 7367	14433 17100
1996/97	25667	42500	57467	67833	71933	39933	10333	9267	9300	7500	6200	6000	37500	46400	57467	68133	70667	38900	7233	6467	6200	13467	11933	6800
1998/99	4867	10867	23233	26967	26433	24333	10333	9267	9300	4500 7500	6200	6000	0033 3633	4500 9867	27033	32567	29633	25567	7233	6467	6200	4500	7867	9667
1999/00 2000/01	6733 11433	7233 16200	7500 28067	8800 29900	9000 32433	10333 29267	8500 18100	6467 13000	6200 9300	4500 7500	3167 6200	8500 6000	8800 13733	11433 17133	11533 28633	6533 29867	6000 30867	7233 26033	7233 16800	6467 13167	6200 11900	4500 10967	12033 6933	14033 6600
2001/02 2002/03	6733 5333	7233 4000	7500 4367	8800 5700	9000 6000	7367 7233	7233 7233	6467 6467	6200 6200	4500 4500	3100 3100	3000 2500	7433	6300 4000	6200 4367	5700 5700	6000 6000	7233 7233	7233 7233	6467 6467	6200 6200	4500 4500	3100 3100	3000 2533
2003/04	2567	10667	13367	6400	3500	4567	5533	5567	5733	4500	0	0	2633	10933	13433	6367	3433	4500	5433	5500	5667	4500	0	0
							22 44	0 50	000 14	L/Dav			52 000 70	000 14	I./Dav			> 70 /	000 844	/Dav				
L							JJ,11	u - 52,	000 11	ырау			52,000 - 78	,000 10	ырау			- 10,1		Juay				

Figure 12 – Base Case and NoMExCO Murray River @ Lock7

Bas	e Ca	ase											Nol	IExC	:0									
1891/92	28900	Aug 50333	60433	43067	Nov 15500	Dec 4300	Jan 1933	Feb 2733	Mar 2433	Apr 1867	May 5300	Jun 11267	Jul 28900	Aug 50333	60433	43067	Nov 15500	4300	Jan 1933	Feb 2733	Mar 2433	Apr 1867	May 5300	Jun 11267
1892/93 1893/94	22633 33267	21200 41200	25900 44967	20067 46333	14700 40067	7300	2567 3467	2233 2833	1667 6600	4100 11767	9500 18333	23533 29533	22633 33267	21200 41200	25900 44967	20067 46333	14700 40067	7300	2567 3467	2233 2833	1667 6567	4100 11767	9500 18300	23533 29533
1894/95 1895/96	40067 13800	54833 19367	71533 27000	99000 18633	113167 5967	67600 2600	9667 1600	4533 3767	3800 4333	5400 5500	8933 9033	8367 8600	40067 13800	54833 19367	71533 27000	99000 18633	113167 5967	67600 2600	9667 1533	4533 3700	3800 4333	5400 5500	8933 9033	8367 8600
1896/97	10467	7867	5767	2733	1633	1733	3567	3400	3200	3800	4733	5700	10467	7867	5767	2733	2100	2733	4133	3467	3200	3567	4700	5733
1898/99	10367	14433	15100	7067	3167	3133	3900	4300	5133	5700	8900	11300	10367	14433	15100	7067	3167	3100	3833	4033	5467	5767	8833	11267
1899/00 1900/01	19567 24667	15367 34200	9200 36200	3767 19033	2933 4500	5500 1567	6567 1700	7400 2633	9733 3533	10700 5767	11767 7567	14200 7133	19567 24667	15367 34200	9200 36200	3733 19033	2667 4500	5467 1567	6667 1700	7567 2600	9867 2933	10767 4933	11733 7067	14200 7000
1901/02	8900 5833	9633 3633	18833 4267	12733 3800	5533 3000	3900 4533	4967 4267	6267 5567	8333 5967	7533 5867	5367 8533	5400 8733	8933 5700	9633 3600	18933 4267	12800 3800	5567 2900	2467 4667	3667 5000	5733 7200	7867 7033	7467 5300	5600 8133	5400 8667
1903/04	20000	19167	17033	13133	5700	3700	5033	4733	3000	4133	3467	4933	20000	19167	17033	13300	5833	3733	5000	4733	3067	4167	3800	5567
1905/06	26667	32933	20167	8633	4067	1867	1533	3333	7100	7733	9033 6800	16600	26733	32933	20400	8600	3833	1867	1700	3533	7133	6600	6667	16733
1906/07 1907/08	31800 8167	40767 10700	45567 7700	58667 2767	67200 2833	31233 3533	4033 2300	2800 3767	2133 3367	3933 2900	6367 6933	7133 7533	31833 8167	40767	45767 7700	59200 2767	68367 2833	31500 4000	4033 2600	2800 4067	2133 3400	3933 3033	6367 6900	7133 7500
1908/09 1909/10	9167 31067	9200 41367	12467 52933	8767 33133	3233 5600	2167 3467	2700 5333	4167 3633	5600 5233	6333 4533	12167 5533	23867 7467	9167 31067	9200 41367	12467 52933	8767 33133	3233 5600	2200 3467	2800 4900	4100 3467	5833 5233	6233 4533	12133 5500	23900 7467
1910/11	13500	16333	26900	28133	11167	4433	4267	9067	5900	4667	6600	22833	13500	16333	26900	28100	10933	4433	4267	9033	5933	4667	6567	22833
1911/12	29007 8733	11433	22067	12300	6767	5567	2455 3900	4000	4300 6333	4300	7800	8067	29567 8600	11433	22067	12267	6733	5600	3833	4067	4433 6300	6567	7800	8067
1913/14 1914/15	8233 5967	5867 3533	6267 3667	6100 2233	3400 3067	1/33 7633	1400 8233	2667 9400	5033 8100	5667 7267	7667 7400	6900 8267	8233 5967	5867 3533	6267 3667	6133 2233	3433 3033	1833 7667	1433 8233	2533 9333	5833 8067	6267 7200	7867 7400	6933 8267
1915/16 1916/17	20933 22133	30233 33733	33200 45133	31000 54800	11633 62333	4500 56900	5500 27233	5400 9067	3633 4700	6700 4233	7433 11100	7100 35333	20933 22100	30233 33733	33200 45133	31000 54867	11633 62567	4400 57133	5067 27467	5233 9100	3633 4700	7267 4233	8000 11100	7233 35333
1917/18	63667	104267	152067	198733	210567	150167	40033	8000	6100	6100	25533	37733	63667	104267	152067	198600	209867	149300	39600	8000	6100	6100	25533	37733
1919/20	8533	5600	4233	5200	7067	7667	5200	3500	4400	8033	9000	7067	9400	6100	4367	5233	7067	7667	5200	3500	5100	8333	9033	7967
1920/21 1921/22	16233 19267	29733 29967	40200 39767	42400 45500	22333 28633	7233 6133	3133 2067	4233 2633	4833 1767	4967 2833	6500 6133	11467 6933	16233 19267	29733 29967	40200 39767	42400 45467	22333 28133	7200 5800	3133 1900	4233 2600	4833 1767	4967 2833	6500 6133	11467 6933
1922/23 1923/24	8267 32400	14100 43133	18967 42667	8567 33800	2467 20833	2267 8867	1433 5033	2067 5400	2333 4900	3200 6567	5967 8233	15067 9000	8233 32433	14100 43133	18967 42667	8600 33833	3433 20300	4500 8600	2633 4967	2267 5400	2867 4900	4767 6567	7100 8233	15400 9000
1924/25	9433	19000	32500	38667	38967	36533	14500	6500 2400	3733	2767 8900	5500 17700	13967	9433	18667	32267	38200	37900	34633	13233	6333 2400	3733	2767 8000	5500 17700	13967
1926/27	25800	34333	38600	32000	13467	4433	1733	2700	1933	2167	5133	6733	25433	34333	38600	32000	13467	4433	1733	2700	1933	2167	5133	6733
1927/28	/ 567 20400	9/00 12400	7333 5167	4833 10800	4/00 7500	516/ 2800	7700 1433	9433 2967	7233 3667	6700 7400	10267	8333	/567 20400	9700 12400	7333 5167	4833 10800	4533 7533	2833	7667 1433	9433 2967	7233 3667	6700 7400	10/267	8333
1929/30 1930/31	8333 6967	7233 11800	7033 10933	4533 9800	4167 7600	7100 10333	4433 7267	3500 4200	3867 4633	6800 11500	8000 26933	7400 44400	8333 7000	7233 11800	7033 10933	4600 9933	4100 7833	6900 10267	4300 6000	3467 3233	3933 4267	6600 11433	7833 26933	7367 44400
1931/32 1932/33	71033	104800 38400	104933 43400	70067	25867 15700	5500 4467	2033 3233	4433 2767	4567 2267	11700 2733	15700 5600	22633 7967	71167	105600 38433	105600 43467	70367	25900 15733	5500 4633	2033 3367	4433 2800	4567 2267	11700 2733	15700 5600	22633 7967
1933/34	13933	19367	25300	12867	5667	8200	5533	5367	4867	5567	8200	6000	13900	19367	25300	12867	5667	8200	5533	5367	4867	5567	8200	6000
1935/36	28467	39233	50767	49867	25633	5633	6033	4567	2867	4233	7767	7633	28467	39233	50767	49867	25633	5633	6033	4567	2867	4233	7767	7633
1936/37 1937/38	18667 6667	34433 4600	43300 6433	23933 6767	5633 4367	5800 5567	6000 4667	4333 4067	2433 3433	2400 6167	5233 9200	7133 6433	18667 6667	34433 4933	43300 6433	23933 7333	5633 5567	5800 5600	6300 4567	5033 4067	2767 3633	2633 5933	5300 8633	7133 6267
1938/39 1939/40	6733 36467	6467 46700	4833 57567	2233 56867	2667 41867	6600 16967	8000 4233	11167 2900	12700 1833	20367 5033	22300 9333	27433 6900	6733 36467	6467 46933	4867 58133	2267 57267	2733 41933	6533 16967	7700 3933	11100 2433	12467 1767	20200 4633	22267 9000	27433 6800
1940/41	5300 8767	3533	4200	3233	4667	6067 2600	11033	6833	6200 5100	4700	5500 12067	6733	5267 8767	3533	4200	3100	4500	5967 2700	10967	6833	6200	5833	5400	6567
1942/43	33600	38000	37800	23100	6567	2700	1767	2733	1800	5167	8333	7267	33633	38000	37767	23000	6300	2600	1933	2833	1867	5467	7767	7033
1944/45	7833	4900	3600	2667	2367	5300	6467	9033	8833	7400	6600	6833	7867	4900	3567	2633	2233	6200	7300	9167	8900	7700	6667	6767
1945/46 1946/47	6933 15600	9067 25067	8900 13267	5667 4067	3867 3900	2533 5767	4267	7467 5933	5600 7267	5900 7333	6300 5267	6200	6933 15600	9067 25067	8900 13267	5667 4033	3667 3900	2467 5767	4300 4500	7500 5733	5567 6933	6000 7100	6300 5200	7000 6167
1947/48 1948/49	14433 11667	23967 6500	26967 3800	23467 4067	13100 5167	7300 5467	3233 3400	4067 4200	2867 5967	4700 6133	9367 6800	10033 7600	14433 11667	23967 6500	26967 3767	23467 4067	13000 5167	7300 5433	3333 3267	4133 4133	2900 5967	4700 6133	9367 6800	10033 7600
1949/50 1950/51	7767 22567	7800 25667	8367 30467	17867 23000	25100 22867	11200 22267	3233 6100	7400 5400	11500 3367	23133 3800	35900 9600	28600 23400	7767 22567	7800 25667	8333 30467	17833 23033	25033 22867	11167 22233	3233 6100	7400 5400	11433 3367	23133 3800	35900 9600	28567 23400
1951/52	32533	42533	47167	38967	23767	6300	1933 32900	2367 6767	2300	5967 2733	15900	35033	32533	42667	47633	39400	23833	6300	1933 32900	2367 6767	2300	5967 2733	15900	35033
1953/54	19467	34667	48167	61933	65733	37733	7433	4500	2233	4200	8233	7600	19467	34667	48167	61933	65733	37733	7433	4500	2233	4200	8233	7600
1955/56	30233	57167	108433	147267	116300	52733	8567	4467	18467	37633	66200	119700	30200	57167	108433	147267	116300	52733	8567	4467	18467	37633	66200	119700
1956/57 1957/58	9400	240567	249400 6667	3100	3267	5067	4167	4233 3767	2800 2700	3700 2600	5467 4967	6467 9633	9400	240567 10267	249400 6667	196200 3100	3300	5367	4233	4233 3767	2800 2733	3700 2600	5467 4967	6467 9633
1958/59 1959/60	15400 6567	34667 5933	47933 5467	48200 7900	39600 9300	21867 8433	5800 4800	4267 4800	3833 2933	5733 4067	8967 16100	7200 27200	15400 6567	34667 5933	48000 5433	48267 7900	39500 9300	21600 8433	5733 4800	4267 4800	3833 2933	5733 4067	8933 16100	7200 27200
1960/61 1961/62	30967 10800	40300	58467 19133	69467 13833	57067 6033	18033 8900	4233 10100	2767 5400	4433 3400	7300 3333	9667 7333	7367 11533	30967 10800	40300	58467 19133	69467 13833	57067 6033	18033 8767	4233 10000	2767 5367	4433 3400	7300 3333	9667 7333	7367 11533
1962/63	15033	16933	15600	12467	4700	3433	3733	3700	3700	5133	9500	14167	15000	16933	15600	12467	4700	3433	3733	3700	3700	5133	9500	14167
1964/65	26900	39633	46633	57367	67133	38433	5033	2133	1633	2767	5467	6633	26933	39700	46667	57367	67133	38433	5033	2133	1600	2767	5467	6633
1965/66	8067	12267	21567	19900	5400 8900	11500	6533	3933	2467	2500	5033	6367	/06/ 8067	12267	21567	19900	8900	11500	4433 6533	3933	2467	2500	5033	6367
1967/68 1968/69	6233 30633	4433 31900	6233 32533	7467 15400	6800 6067	7033 6467	6033 4800	6400 8233	8067 10167	7600 9367	13033 10833	28567 10767	6233 30633	4433 31900	6267 32533	7600 15400	6833 6067	7033 6467	5933 4900	6267 8233	8100 10167	7767 9367	13000 10833	28533 10767
1969/70	19200 19000	25167 28800	31500	24667	9467	5067 21867	4000 5833	3767 5667	4267 11467	8933 8400	12800 13200	12300 13767	19200	25167 28800	31467	24533 64333	9433	5067 21867	4000 5833	3767 5667	4267 11467	8933 8400	12800 13167	12300
1971/72	14200	14533	23367	25167	29767	28767	9333	5167	3067	3567	6200	6433 23900	14200	14533 6432	23367 4900	25167	29767	28933	9467	5167 9600	3067	3567	6200	6433 23900
1973/74	29600	40867	63100	89800	92500	35067	18100	13867	7433	16267	42000	63300	29600	41533	64433	92467	94567	35233	18100	13867	7433	16267	42000	63300
1975/76	17433	38867	64533	109333	161533	143433	42333	5667	2333	2733	6433 6433	7767	17433	38867	64533	109333	161533	143433	42333	5200 5667	2333	2733	6433 6400	7767
1976/77 1977/78	6067 15033	3600 9633	3533 5533	6867 2533	13500 2100	6467 1367	2500 2200	3733 2600	3600 4700	4500 7167	7233 7000	9000 11167	6067 15033	3600 9633	3533 5533	6867 2533	13500 2167	6467 1933	2500 2767	3733 2900	3600 5233	4500 7567	7233 7200	9000 11200
1978/79 1979/80	24000 5867	33033 5333	36567 22033	35167 31867	24233 31233	8800 8100	3800 1633	3233 2033	2267 2033	4433 5200	9500 8933	8200 7900	23933 5867	33000 5333	36567 22033	35233 31833	24700 31167	8933 8067	3800 1633	3233 2033	2267 2033	4433 5200	9500 8933	8200 7900
1980/81	10133	15267	12367	6833	5133	6533	5400	4967	4900	5667	7667	12233	10133	15267	12367	6833	5233	6567	5400	4967	4933	5767	7767	12267
1982/83	5533	2767	2900	1900	2800	5367	+033 5267	7100	10133	8900	10167	10467	5533	2767	2900	1933	1267	4533	5000	6300	9433	8800	10167	10467
1984/85	6467	30067 25267	41000	43833 49267	36733	4733 7567	7867 1700	2200	6400 1733	4733 3733	9433 6233	7533 /	18500 6467	3006/ 25267	41000	43867 49433	36867	4d33 7600	/96/ 1700	2200	6 <i>3</i> 67 1733	4/33 3733	9433 7133	7567
1985/86 1986/87	6667 27000	21300 39333	25933 40800	11133 38900	4200 31700	4800 16667	3067 6900	3100 4167	1933 3000	3000 3833	6933 6800	7567 11600	6300 27000	21167 39333	25933 40800	11133 38900	4700 31667	5467 16633	4300 6900	3933 4167	2200 3000	2867 3833	6833 6800	7533 11600
1987/88 1988/89	25567 28000	31700 31533	21967 30100	7000 16367	5033 6267	6800 6867	5233 5100	4433 3200	3300 5400	5500 15267	9600 30533	17400 38433	25567 28000	31700 31533	21967 30100	6967 16400	5000 6300	6800 6933	5233 5267	4400 3267	3300 5400	5533 15267	9633 30533	17400 38433
1989/90	44000	48833	54033	48800	20800	6300	2733	4167	3133	4733	9533	12600	44000	48833	54167	49267	21267	6333	2733	4167	3133	4733	9533	12567
1991/92	14333	25733	36467	42100	19233	3933	2233	3267	2367	3600	7833	9167	14333	25733	36467	42100	19233	3933	2233	3267	2367	3600	7833	9167
1992/93 1993/94	9500 26933	16100 39233	34800 63367	60433 106133	90800 129200	95000 79900	47300 10733	11200 6467	5300 6300	6533 5333	10467 6367	11533 7000	9500 26933	16100 39233	34733 63367	60300 106100	90600 129200	95067 79900	47467 10733	11233 6467	5300 6300	6533 5333	10467 6367	11567 7000
1994/95 1995/96	9067 35100	5867 46133	4100 38667	4633 15767	6867 10600	5767 7467	5633 4867	4833 4367	3700 3700	4533 4500	7833 5967	23800 7433	9067 35100	5867 46133	4100 38933	4633 16267	6067 10733	4933 7467	5333 4467	4733 4033	2933 3567	3867 4467	7700 5933	23800 7433
1996/97	26100 6467	44933	64767 7633	76667	78533	36500	4867	3867 3333	3667 2300	3700 5700	5300 8433	6833 6733	26100	45067 4533	65100 7633	77300	78933	36533 4300	4867 3800	3867	3667	3700 5700	5300 8433	6833 6733
1998/99	8133	11433	18700	14600	7867	3367	2233	3500	5300	6700	6267	7600	8133	11433	18700	15333	8167	3433	2300	3500	5300	6667	6267	7600
1999/00 2000/01	9000 10733	11800 15300	12400 28033	/433 30300	5533 32233	4167 21833	2767 5533	4233 5833	3267 3833	4667 4933	8400 6033	8567 6300	9000 10733	11800 15300	12400 28033	/400 30300	5400 32200	4233 21867	3067 5533	4467 5833	3200 3833	4633 4900	8400 6033	8567 6300
2001/02 2002/03	7767 6300	6767 3767	6700 4133	5833 2667	4600 4200	3033 7567	1833 6300	4333 6067	3767 7267	4900 7200	6667 6500	6467 5333	7767 6300	6767 3767	6667 4133	5800 3133	4567 5367	2900 8067	1767 6767	4300 7167	3433 8133	4233 7300	6400 5933	6467 4833
							33 110	- 52 0	00 MI	/Dav			2 000 - 78	000 MI	/Dav			78 00	0 MI /	Dav				
L						•		52,0		Juy	_		_,000 - 10,	WIL	. Day			, 5,00		Juj				

Figure 13 – Base Case and NoMExCO Murray River Upstream Wentworth Weir

4.3.3 Salinity

As water storage reduces during drought because of evaporation, surface water salinity increases with the concentration of salts. Salinity of the surface water in an extended drought may make it unsuitable for some irrigation, such as for horticulture, and the quality of water supplied may not be of the standard required, irrespective of availability of supply. Changes in the long term average and median end of month salinity concentrations resulting from each of the key modelled options are presented in Tables 12 to 15³. In some cases long term average salinity concentrations are biased by individual salinity readings. These high readings typically occur for very small lake volumes. In order to ensure that this did not unduly affect the conclusions with respect to salinity changes as a result of each option, salinity exceedence curves have been produced to compliment the results of Table 12 and 13. These can be found in Appendix 7.

	ECWeth	ECPam	ECMen	ECCawn	ECw32	ECLowDarl	ECAnnab	ECusTandou
Base Case	376	616	1280	1604	429	418	378	602
M0	381	859	1581	2237	412	380	337	521
M1	380	771	1646	2032	414	389	354	550
M2	384	1129	1063	2038	403	351	293	448
M3	380	854	1298	2464	416	390	346	535
NoMC	385	1351	0	0	417	417	52	208
NoCExMO	376	448	1501	0	467	461	35	235
NoCEnMO	380	404	1567	0	432	432	34	217
0.5M	370	573	1411	952	417	408	351	559
NoMExCO	375	715	435	868	389	370	384	543
NoMEnCO	381	438	365	1082	373	462	261	548
PInc	370	546	1624	1811	429	422	423	663

Table 12 – Longterm Average End of Month Salinity (EC)

Table 13 – Longterm Average End of Month Salinity Increase (EC)

	ECWeth	ECPam	ECMen	ECCawn	ECw32	ECLowDarl	ECAnnab	ECusTandou
M0	5	244	302	633	-17	-37	-41	-81
M1	4	155	366	428	-15	-29	-24	-53
M2	8	513	-217	434	-25	-67	-85	-155
M3	4	238	18	860	-13	-28	-31	-68
NoMC	9	735	-1280	-1604	-11	0	-325	-394
NoCExMO	0	-168	221	-1604	39	44	-343	-367
NoCEnMO	4	-212	288	-1604	3	14	-343	-386
0.5M	-6	-43	131	-652	-12	-9	-27	-44
NoMExCO	-1	99	-845	-736	-39	-48	6	-60
NoMEnCO	5	-178	-915	-522	-56	44	-116	-54
PInc	-6	-70	344	207	0	4	45	60

³ It should be noted that the EC changes presented in the summary tables of Appendix 3 for various locations in the Lower Murray Darling system represent the total salt load divided by the total flow volume over the full simulation period and NOT changes in end of month salinities.

	ECWeth	ECPam	ECMen	ECCawn	ECw32	ECLowDarl	ECAnnab	ECusTandou
Base Case	354	365	415	640	386	387	334	570
M0	356	380	363	551	379	369	0	451
M1	354	381	377	564	380	373	0	472
M2	356	376	341	488	377	356	0	398
M3	352	374	392	589	381	373	0	481
NoMC	361	1349	0	0	359	359	0	240
NoCExMO	355	376	483	0	421	420	0	277
NoCEnMO	356	369	436	0	405	405	0	281
0.5M	347	363	394	605	378	379	194	556
NoMExCO	348	397	383	657	352	346	0	583
NoMEnCO	356	395	357	528	354	402	0	507
Plnc	350	370	443	688	392	393	0	615

Table 14 – Longterm Median End of Month Salinity (EC)

Table 15 – Longterm Median End of Month Salinity Increase (EC)

	ECWeth	ECPam	ECMen	ECCawn	ECw32	ECLowDarl	ECAnnab	ECusTandou
M0	2	15	-52	-88	-7	-17	-334	-119
M1	0	16	-39	-76	-7	-14	-334	-99
M2	2	11	-75	-151	-10	-31	-334	-172
M3	-1	9	-24	-51	-5	-13	-334	-89
NoMC	8	984	-415	-640	-28	-28	-334	-330
NoCExMO	1	11	68	-640	34	33	-334	-293
NoCEnMO	2	4	21	-640	19	19	-334	-289
0.5M	-7	-2	-21	-35	-8	-7	-140	-14
NoMExCO	-6	32	-33	17	-34	-40	-334	13
NoMEnCO	2	30	-58	-112	-33	15	-334	-64
Plnc	-4	5	27	49	5	6	-334	45

Modelled options produce changes in salinity concentrations both within and downstream of the lakes scheme. This is discussed in the following sections.

Changes in Lake Salinity

Restoration of Lakes Menindee and Cawndilla to more natural wetting and drying cycles result in increased average salinity levels in the remaining lakes. This is due to these remaining lakes being less frequently utilised as a result of increased unregulated flows meeting demands, and the South Australian dilution flow trigger of 1,300GL being triggered less often. Consequently, there are greater periods of time when demands are low and the opportunity for concentration of salts through evaporation within the lakes is more frequent.

Restoration of Lake Menindee to natural wetting and drying appears to result in an improvement in average salinity in Lakes Cawndilla and Wetherell. However, inspection of the exceedence curves for this option reveals that results are biased by a number of extremely large monthly salinity concentrations. Median salinity levels for Lake Cawndilla and Lake Pamamaroo increase and median salinity levels for Lake Wetherell are largely unchanged.

Enhancement of the Lake Menindee restoration option through an increase in the Cawndilla outlet capacity results in improved average salinity levels in Lake Pamamaroo but a worsening of median salinity levels. Lake Pamamaroo volumes remain higher for longer periods of time as a result of Lower Darling and Murray demand now being able to be met to a greater degree from outflows from Lake Cawndilla. Whilst this results in a salinity increase for large Lake Pamamaroo volumes through lower lake utilisation, this is more than offset by the large decrease in time that the lake spends at lower levels where salinity concentrations are higher.

Restoration of Lake Cawndilla to a more natural wetting and drying cycle results in a reduction in average salinity in Lake Pamamaroo, but an increase in median salinity. There is also an increase in average and median salinity in Lake Menindee and negligible change in Lake Wetherell. Median salinity levels in Lakes Menindee and Pamamaroo increase as both storages have greater periods of time when demands are low and the opportunity for concentration of salts through evaporation are more frequent. Increasing the Menindee outlet capacity for this option results in an increased rate of draw down of Lake Menindee which in turn increases the time that the storage spends with low volumes and high salt concentrations. This is turn results in an average salinity increase from both the base case and the existing Menindee outlet configuration option.

Enhancement of the Lake Cawndilla restoration option through an increase in the Lake Menindee outlet regulator capacity results in an improvement in average salinity levels in Lake Pamamaroo. The release of water at a greater rate through the enlarged Menindee outlet reduces the demand on Lake Pamamaroo. Whilst this results in a salinity increase at higher lake volumes through lower lake utilisation, this is more than offset by the large decrease in time that the lake spends at lower levels where salinity concentrations are higher.

Rapid emptying of the lakes when in New South Wales control appears to result in increased lake average salinity levels for all but one option. Median salinity levels are largely unchanged for Lakes Wetherell and Pamamaroo, and decrease for Lakes Cawndilla and Menindee. Rapid emptying options seek to achieve savings through reductions in surface area. However, a consequence of rapid emptying is that the lakes spend a greater proportion of time at low levels where evaporative losses can lead to much higher salt concentrations.

Changes in Downstream Salinity

Downstream of the scheme, average and median salinity levels generally decrease in both the Lower Darling and in the Murray for the rapid emptying options. This is due to reduced lake evaporation losses leading to greater volumes available for dilution.

Restoration options, that involve Lake Cawndilla increase salinity concentrations in the Lower Darling and Murray. Prior to restoration these increased salt loads would have been discharged from Lake Cawndilla into the Darling Anabranch.

Restoration of Lake Menindee to more natural wetting and drying reduces salinity levels in the Lower Darling due to increased volumes of water available for dilution. However, enhancement of this option through enlargement of the Cawndilla outlet regulator to the Lower Darling results in increased salinity levels as a consequence of this water now entering the Lower Darling in preference to the Darling Anabranch. Of interest is the apparent salinity increase in the Murray. Reasons for this are thought to be due to the substantial alteration in the South Australian dilution flow pattern.

Restoration of both Lake Menindee and Lake Cawndilla combines the effects of increased salt loads into the Lower Darling as a result of less frequent use of Lake Cawndilla, and increased dilution flows from less frequent use of Lake Menindee. The result is a reduction in salinity in both the Lower Darling and the Murray.

4.4 Variation in Dilution Flow Release Patterns

Dilution flows from the Menindee Scheme are dependent on volumes in Menindee, Hume and Dartmouth storages. The minimum trigger volume in Menindee Lakes is 1,300 Gigalitres. Inspection of the combined storage surface area versus volume relationship for the lake scheme (see Figure 14) indicates that the change in surface area for volumes in this range is small. Consequently alteration of the dilution flow pattern from 58 Gigalitres per month to a pattern in which a greater volume is realised over a smaller window is unlikely to appreciably reduce the evaporative area of water remaining in the scheme. Therefore no significant savings from this type of approach are likely to be realised. Consequently no further assessment of this option was conducted.

Figure 14 – Menindee Scheme Surface Area versus Volume Relationship

4.5 Potential Water Savings from Privately Owned Storages

Results from the case study analysis of options for reducing evaporative losses from off river storages are presented in Table 16. Findings are discussed in the following sections.

	Base Case	Purchase All Supplementary Water Licenses (Option 1)	No OFS, 1,000,GL in each dam (Option 2)	No Evap on OFS (Option 3)
General security (GL/Yr)	199	215	204	188
Supplementary (GL/Yr)	36	0	0	33
Floodplain harvesting (GL/Yr)	14	19	0	11
Rainfall runoff harvesting (GL/Yr)	77	77	7	71
Groundwater (GL/Yr)	34	35	36	29
End of System Flow (GL/Yr)	704	717	730	716
Average Area planted (Ha)	44,970	45,150	47,000	47,143
Sustainable area (Ha)	42,038	41,601	39,171	44,588
Keepit + Split Rock evaporation	49	47	73	47
OFS evaporation	79	77	0	0

 Table 16 - Water Savings from Privately Owned Storages (Namoi Case Study)

4.5.1 Purchase of All Supplementary Licenses

As can be seen from Table 15, reduced access to supplementary water is offset by increased general security and floodplain harvesting. This is as a consequence of no corresponding lowering of the plan limit for the valley in the model. As a result evaporation in off-river storages is hardly reduced at all. Reduced access to supplementary water does however increase the Namoi end of system flows by 13 Gigalitres per annum.

If reduced access to supplementary water is accompanied by a reduction in the valley plan limit, a greater increase flow would be observed in the river and users would be forced to improve there efficiency in order to ensure maintenance of existing production levels. This would in all likelihood be through a reduction in farm storage evaporation.

4.5.2 Removal of Off-River Storage

Removal of off river storage capacity and a corresponding increase in the capacity of Keepit and Split Rock Dams results in increased evaporative losses from Keepit and Split Rock. However, this is more than offset by the reduction in evaporation from off-river storages. The total saving in evaporation from this option is 55 Gigalitres per annum. The major impact from this saving strategy is the large decrease in valley diversions. Therefore enlargement of Keepit and Split Rock cannot offset the impacts of removal of off-river storage.

4.5.3 Stopping Evaporation from Off-River Storages

Under this option evaporation from off river storages was assumed to be able to be reduced to zero. Rainfall directly into off-river storages was assumed to still be possible.

The extra water in the off river storages as a result of reduced evaporation allows users to divert less water and plant a greater area. An additional benefit is that the average volume in Keepit and Split Rock Dam also increases with little change in major storage evaporation.

5 DISCUSSION OF NON MODELLED RESULTS

5.1 Use or Creation of Upstream Storage Capacity

5.1.1 Instream Storage in The Upper Darling and Floodplain Storage at Menindee

Instream Storage in the Upper Darling

Storing water in an instream storage with a small surface area immediately upstream of the Menindee Scheme will result in reduced evaporative losses when compared to the equivalent volume being stored at the Menindee Lakes Scheme. Furthermore, the additional delivery losses are likely to be small and the ability to relocate water from the inefficient lakes scheme into the instream storage is likely to be easier if the location of the storage is in the vicinity of Menindee.

When volumes exceed the capacity of this instream storage, an operational decision will need to be made with respect to whether the instream storage is emptied and all water is stored in the lakes scheme, or alternatively whether only the volume in excess of the instream storage capacity is stored in the lake scheme. If the latter occurs then the usefulness of the additional in stream storage capacity is diminished by the increase in total surface area.

This is best shown by Figure 15 which compares the combined storage volume surface area relationships for two cases. Case 1 represents the present arrangement where water is set aside in dry times to meet Broken Hill town water supply and High Security and Riparian requirement and a drawdown sequence occurs using water in Lake Pamamaroo and then Lake Wetherell. Case 2 represents storing this same water in an instream storage in the vicinity of the scheme (at Bourke), Lake Wetherell and Lake Pamamaroo . The draw down sequence for this case would be Lake Pamamaroo first, then relocation of the water into the instream storage, then drawing down the instream storage, and then Lake Wetherell. The instream storage has a capacity of 46 GL as presented in Table 5 in the previous chapter.

Figure 15 – Combined Storage Area versus Volume Relationship

As can be seen from Figure 15, savings through reductions in evaporation using the instream storage in Case 2 are only realised in the range of approximately 60 to 110 Gigalitres. In this zone the combined Case 2 storage surface area is less than that of Case 1 and water is not required to be stored in Lake Pamamaroo. For volumes in excess of 110 Gigalitres water is required to be held in Lake Pamamaroo resulting in surface areas equivalent to that of Case 1. Given that stored volumes are frequently in excess of 110 Gigalitres this translates to only a small long-term saving.

In conclusion, the small volume of instream storage offered upstream of the scheme together with the small volumetric range in which savings are apparent, mean that it is likely to be less attractive than some other drought security options. One such option is the creation of complimentary floodplain storage at Menindee.

Floodplain Storage at Menindee

Use of a floodplain storage in the form of a ring tank together with the previous instream storage allows water savings to be realised over a larger range of stored volumes, and reduces the need to hold drought reserves in the shallow lakes. This is particularly the case when ring tanks depths approach 6 metres.

The storage area relationship for scheme drawdown utilising water stored in an upstream instream storage, a floodplain ring tank at Menindee, and Lake Wetherell is displayed in Figure 16. The storage area relationship for scheme drawdown storing this same volume using only Lake Pamamaroo and Lake Wetherell is also shown. The ring tank is 6 m deep with a volume of 150 Gigalitres as presented in Table 6.

As can be seen the range of storage volumes over which water savings can be made is considerably larger than that of Figure 15 when only upstream instream storage is utilised.

Figure 16 – Combined Storage Area Versus Volume Relationship

If the combination of Lake Wetherell and instream and floodplain storage shown in Figure 16 were used in preference to the Lake Wetherell and Lake Pamamaroo combination, 225 Gigalitres as opposed to 275 Gigalitres (refer to Figure 1) is required to meet Broken Hill, and High Security and Riparian requirements over 18 months. This is an evaporative saving of 55 Gigalitres. The distribution of resources required to achieve this is shown in Figure 17.

Figure 17 – Distribution of Resources Under Dry Conditions

Although this evaporative saving of 55 Gigalitres appears large it must be remembered that scheme storage is seldom in this range and that in terms of a long-term average this saving volume is considerably lesser and in the order of only 6 Gigalitres per annum.

5.1.2 Improved Use of Existing Smaller Deeper Lakes

The analysis of the proceeding section has demonstrated that creation of additional stored volumes through instream and floodplain storage have to approach 165 Gigalitres for a surface area of 5,000Ha before any appreciable evaporative savings can be made. An assessment of the saving associated with better use of existing smaller deeper lakes for drought supplies has been made. Lake Tandure has been assumed to be able to be utilised as drought security storage. Full supply capacity has been increased from the present 89 Gigalitres (RL 62.3 metres) to 129 Gigalitres (RL 64.3 metres). This assumes the construction of associated levee works and a drawdown sequence of Lake Pamamaroo, then Lake Tandure, then Lake Wetherell.

If a combination of Lake Wetherell, Lake Tandure and Lake Pamamaroo storage were used in preference to the current Lake Wetherell and Lake Pamamaroo combination, 191 Gigalitres as opposed to 275 Gigalitres (refer to Figure 1) is required to meet Broken Hill, and High Security and Riparian requirements over 18 months. This is an evaporative saving of 84 Gigalitres. The distribution of resources required to achieve this is shown in Figure 18.

Figure 18 – Distribution of Resources Under Dry Conditions

As with the previous additional storage assessment in section 5.1.1 this evaporative saving of 84 Gigalitres is seldom realised due to the scheme seldom being in this storage range. Consequently, in terms of a long-term average this saving volume is considerably lesser and in the order of only 9 Gigalitres per annum.

5.1.3 Tributary Storages

In order to gain an appreciation of the suitability of using tributary storage in preference to Menindee scheme storage, an analysis of the losses associated with flow events along the Namoi and Barwon Darling river systems was undertaken. Small events in which there are no irrigation extractions and ungauged tributary inflows are difficult to find. Consequently, only two events for the Namoi River and one event for the Barwon-Darling were analysed.⁴

Irrigation extractions during the time of each event were not present meaning and losses are mostly attributed to the filling of in river weir storages, seepage into the bed and banks of the river and evaporation from the river surface. The progression of these events down each system is shown in Figures 19 and 20.

⁴ Note: At the time of writing this report a sustained release from Pindari Dam is being made in order to deliver water to meet downstream town water supply requirements along the Barwon Darling River. The losses associated with this event should be determined, and used as further input into the determination of delivery losses in dry times.

Figure 19 – Progression of Event Along the Namoi River

Figure 20 – Progression of Event Along the Barwon Darling River

It can be seen from the figures that large losses are experienced along both the Namoi and Barwon Darling River systems. Losses in volume for the two Namoi events in Figure 19 are 62% for the winter event and in excess of 90% for the spring event. Both of these events occurred after a period of prolonged low flows. Losses for the Barwon Darling section of the river are in the order of 35% with an initial loss of approximately 30 Gigalitres (20%) attributable to filling of the many weirs along the Barwon Darling River and the remaining 15% associated with seepage and evapo-transpiration.⁵

⁵ Losses in the Barwon Darling have only been calculated to Wilcannia, as this is the last reliable gauging point. Additional losses are likely to be incurred between Wilcannia and Menindee.

In many years the river conditions for these historic events are likely to be similar to those that would occur at times when water from the upstream storages is required for Lower Darling Water Users. Although the recent advent of environmental flows and increased end of system targets mean that losses may be slightly reduced in the case of the Namoi River from those observed in Figure 19. In addition, there may also be some years where losses can be reduced by "piggy backing" releases for scheme supply on dam environmental releases or unregulated flushes that have filled up the many weir pools along the Darling River. However, this will only be of use in years where these flushes would not have reached the Menindee Scheme.

Additional, evaporation losses attributable to storage of water in the upstream major dams is likely to be negligible due to small increases in existing dam surface areas and the required volume only being utilised at times of during times of dry conditions and low resources in Menindee Scheme.

A preliminary assessment of delivery losses associated with differing storage and delivery volumes for Keepit Dam for the Lower Darling in critical supply years was undertaken using the information from these observed events as a guide. Losses of 50% in the Namoi and an initial loss of 30 Gigalitres (for Weir filling) and a continuing loss of 15% were assumed in the Barwon Darling. In addition, information provided by State Water operational staff was also considered. Results of this assessment are presented in Table 17.

Keepit Released Volume (GL)	Indicative Menindee Delivered Volume (GL)	Comment
100	17	
250	80	Delivered volume equivalent to 18 Month Volume for Broken Hill, HS & Riparian, Lower Darling Delivery Losses
400	150	Delivered volume equivalent to 18 month volume for Broken Hill, HS & Riparian, Lower Darling Delivery Losses plus irrigation and water quality.

Table 17 – Possible Delivery Loss Scenarios

Inspection of Table 17 together with Figures 1 and 2 indicate that losses associated with either delivery of water from Keepit Dam and evaporation from Menindee Lakes is of a similar order of magnitude. The analysis also does not include any additional losses that will be incurred through temporary storage of delivered volumes within Lake Wetherell and has not assigned an environmental benefit to the losses associated with delivering water from upstream.

5.2 Use or Creation of Downstream Storage Capacity

5.2.1 Instream Storage in the Lower Darling

The small volume of instream storage in the Lower Darling (refer to Table 7) means that it usefulness in terms of storage and reduction in evaporative losses is severely limited. Consequently no further assessment of this option has taken place.

5.2.2 Instream Storage in the Murray

Additional Lock storage in the Lower Murray is not sufficient by itself to achieve significant savings. However, it could provide benefits in a refined operation strategy that allows Menindee to be emptied more rapidly and Murray Lock storage to be used as a mitigation measure. However, such a strategy would need to ensure that increased salinity and environmental impacts from increase Lock storage levels and volumes did not occur.

6 CONCLUDING REMARKS

This report has presented the results of preliminary hydrologic analysis of key water saving options within the Darling Basin. More detailed hydrologic assessment of options that appear to have merit will be required in order to fully appreciate the range of hydrologic, socio-economic and environmental implications.

Hydrologic analysis of key options has indicated that that significant water savings have been found to be possible both at the Menindee Scheme and elsewhere in the Darling Basin. However the consequences of this with respect to alterations in diversion volumes, increased salt concentrations and flow changes appears to be high.