Waste reform? What really needs to be done.

Mike Ritchie,

National general manager, SITA Environmental Solutions

3 Key Themes

1. Growth in waste to landfill is unsustainable

- State targets are mostly unachievable
- Requires significant infrastructure investment
- 2. Climate change requires leadership in waste
- 3. Need a new dialogue with government

Voluntary targets – virtually all unachievable

NSW	2014	66% diversion MSW
	2014	63% C+I
VIC	2013	65% MSW
	2013	80% C+I
WA	2020	100% diversion
ACT	2010	100%
SA	2010	75% MSW
	2010	30% C+I
NT		no target
QLD		no target
TAS		in development

Waste disposal trend in Australia

Sources: *The blue book*, 2007/08 – WME environment Business Media *Waste and Recycling in Australia*, 6 February 2006 – Hyder Consulting

QLD

Waste to landfill 1997-2006

C+I waste to landfill SYDNEY

Total waste to landfill VIC

■ Total landfill w aste – Victoria

Total landfill w aste - Metropolitan Melbourne, Geelong, Ballarat, Bendigo and Mornington Peninsula

Key Points

- 1. Growth in waste to landfill is unsustainable
 - State targets are unachievable
 - Requires significant infrastructure investment

2. Climate change requires leadership in waste

3. Need a new dialogue with government

Increase in CO2 emissions since 1960

Australia, 1960-2003

Source: WRI

Stern report (November 2006)

 "Ultimately, stabilisation – at whatever level – requires that annual emissions be brought down to more than 80% below current levels.

Waste has a key role – largely ignored

- Total = $565 \text{ MtCO}_2\text{e}$
- Waste = $15 \text{ MtCO}_2\text{e}$ (ex transport) = 2.7%
- But abatement potential = 35 Mt or 6-8% 3 key actions

Three major greenhouse gas reduction opportunities:

- 1. Fix the legacy of the past improve landfill gas capture
- Limit future emissions limit the landfilling of waste with degradable organic carbon (DOC)
- 3. Capture the embodied energy of materials

1.Landfill Gas Capture and Use

- Most landfills do not capture gas
- Organics in landfill generate methane
 - = 25 x CO2 warming potential
 - = \$42/t of waste now unpriced

- Landfills release 15 Mt CO2e
- 8.5 Mt of CO2e abatement through:
 - better landfill gas capture

2. Avoid landfilling Organics

DOC dissimilates to methane in landfills

2. There are other technologies for Organics

Gross GHG emissions (CO2e) by tonne – 1000 tonnes food DOC

3. Recycling High Embodied Energy Materials – 11 Mt

Paper & Cardboard embodied energy

240L bin fortnightly:

CO2e savings = 2.3 t per year

Equivalent to:

- 11,414 hours use of an average LCD TV
- 7,000 km travelled by an average car

Summary – 3 key actions:

- Capture landfill gas = 8.6 MT
- Avoid landfilling Organics = 13.6 MT
- 3. Recycling high embodied energy materials = 11 MT

= 35 MT per year

Turnaround is 42.5 MT (35MT + avoided emissions of 7.5MT)
Almost equal to the GHG emissions of all cars in Australia in one year (43 Mt of CO2e)

Key Points

- 1. Growth in waste to landfill is unsustainable
 - State targets are unachievable
 - Requires significant infrastructure investment
- 2. Climate change requires leadership in waste

3. Need a new dialogue with government

- to achieve the waste targets
- assist in reducing global warming

How?

- 1. Require methane gas capture improve current landfill operations
- 2. Limit landfill of Organics
- 3. Capture the embodied energy of materials

Infrastructure

- AWT's for household waste = 50 nationally
- C+I dirty MRF's = 50
- Organics recycling 10 fold growth
- Kerbside recycling 20% growth
- EPR schemes for problematic wastes electronics, gas bottles, batteries, packaging – 1200 collection centres

Investment required

- \$4 billion investment required to achieve targets
- Industry is poised to invest but needs the right signals:
 - Market Based signals (e.g. levies)
 - 2. Infrastructure Grants eg VIC (\$8m/yr)
 - 3. Improved Planning process

EPR Schemes

- Important to proceed rapidly into EPR
 - popular demand TV's etc
 - clean up waste streams eg batteries from AWT
- Significant infrastructure investment -1200 centres + 400 processors
- But get the decision made and move on to Organics

EPR, CDL and Packaging Covenant

The big picture is Organics

20 MT Waste

1.3 MT Plastic bags **Tyres** Computers Printer Cartridges TV **CDL** Household paint Oil Cigarettes butts

Conclusions

- 1. Growth in waste to landfill is unsustainable
- Climate change demands action now:
 - 1. Require gas capture
 - 2. Limit Organics in landfill
 - 3. Improve recycling rates and capture embodied energy
- 3. Massive investment in infrastructure
- 4. Move quickly on EPR schemes
- 5. The industry is ready to invest billions it needs the right policy settings
- 6. New dialogue with government

Thank you for your attention

mike_ritchie@sita.com.au

Policy for MSW	United Kingdom	Australia
Putrescible MSW to landfill	Mandated 2010 – 25% reduction 2013 – 50% reduction 2020 – 65% reduction	No mandated targets Voluntary targets: NSW 2014 66% MSW VIC 2013 65% MSW WA 2020 100% ACT 2010 100% SA 2010 75% NT no date 0% QLD no date 0% TAS no target
Landfill levy	\$A86/t	 NSW \$30 to \$58 in 2010 VIC \$11/t WA \$6/t ACT \$80/t SA \$20/t NT \$0/t QLD \$0/t TAS \$0/t
LATS disposal penalty	\$500/t + tipping	Tipping: NSW \$90/t VIC \$40 WA \$44 ACT \$80 SA \$65 NT \$40 QLD \$35 TAS \$30
Recycling Targets	2006 – 23% 2010 – 30%	No regulated targets But recycling rates 40-72%

Carbon Dioxide in

Natural cycle

Landfill with gas capture

Landfill with gas capture

What % of gas capture do you need for landfill to break even with compost?

Compost

Landfill with gas capture

- Average gas capture over Whole life > 82%
- Average gas capture over Operating life > 90%

Willingness to pay additional waste collection weekly fee by State (prompted)

Residents are:

willing to pay

• \$94 / year or \$1.81/week

C+I waste to landfill VIC

