Power efficiency of optical versus electronic access networks.

A. Gladisch⁽¹⁾, C. Lange⁽¹⁾, R. Leppla⁽²⁾

⁽¹⁾T-Systems Enterprise Services GmbH, Goslarer Ufer 35, 10589 Berlin, Germany ⁽²⁾Deutsche Telekom, T-Home, Heinrich-Hertz-Str. 3-7, 64295 Darmstadt, Germany ECOC 2008

Outline.

- Introduction and motivation
- Energy consumption of "wired" access networks
- Energy consumption / power consumption in a Multi-Media world
- Increasing network's energy efficiency
- Conclusion

Introduction and motivation. The Internet traffic growth.

Source: Odlyzko et al: http://www.dtc.umn.edu/mints/2002-2008/analysis-2002-2008.html

 Current power consumption of the global networks is about 2..4 %* of global electricity consumption.

(* Depending on elements considered in the references)

 Will the power consumption of the Internet grow as fast as the traffic?

Introduction and motivation.

What is the Internet: Network Layers and Functions.

4

http://www.cheswick.com/map/index.html

Convright (C) 1999 Lucent Technologie

Introduction and motivation.

Example: Current Carrier Power Consumption.

Energy consumption of fixed access networks.

Network model.

Energy consumption of fixed access networks. Exemplary numerical preconditions and study area.

	$P_{\rm NT}({\rm W})$	$N_{\rm RN}$	$P_{\rm RN}$ (W)	$N_{\rm CN}$	$P_{\rm CN}({\rm W})$	r _{max} (Gbit/s)
FTTEx	7	960	1465	$\frac{a \cdot R_{\rm CN}}{r \cdot N_{\rm RN} + a \cdot r_{\rm P}}$	3000	0.02
FTTCab	7	48	240	$\frac{a \cdot R_{\rm EN}}{r \cdot N_{\rm RN} + a \cdot r_{\rm P}}$	3000	0.05
HFC	30	300	590	$16\frac{r_{\rm max}}{r}$	2800	0.052
FTTB (PtP)	7	8	70	$\frac{a \cdot R_{\rm EN}}{r \cdot N_{\rm RN} + a \cdot r_{\rm P}}$	3000	0.1
FTTB (PON)	7	8	70	$\frac{a \cdot R_{\rm EN}}{r \cdot N_{\rm RN}} = \frac{1}{1 + a}$	1000	0.1
FTTH (PtP)	4	N/A	0	$\frac{a \cdot R_{\rm EN}}{r + a \cdot r_{\rm p}}$	3000	1.0
FTTH (PON)	5	N/A	0	$\frac{a R_{\rm CN}}{r \cdot (1+a)}$	1000	1.0

Preconditions (based on data sheets)

Power consumption;

$$P = N \cdot \left(P_{\rm NT} + 2 \cdot \frac{P_{\rm RN}}{N_{\rm RN}} + 2 \cdot \frac{P_{\rm CN}}{N_{\rm CN}} \right)$$

- Power consumption directly proportional to the energy consumption
- Factor of two for cooling requirements and additional losses (e. g. external power supplies)
- Exemplary dense urban service area with N= 16.384 subscribers
- Upper limit obtained: No bit rate aggregation (a = 1)

Energy consumption of fixed access networks. Results.

- Hybrid optics-copper based networks (FTTEx/Cab/B, HFC):
 - Electro-optic active conversion stage necessary
 - Access bit rates limited by copper infrastructure
- Pure optical access networks (FTTH):
 - High access bit rates at low energy consumption
 - Highest energy efficiency of FTTH PONs due to sharing

Energy consumption of fixed access networks. Measurements: FTTEx ADSL2+ ; FTTCab VDSL2 systems.

	$P_{\rm NT}({\rm W})$	$N_{\rm RN}$	$P_{\rm RN}$ (W)	N _{CN}	$P_{\rm CN}({\rm W})$	r _{max} (Gbit∕s)
FTTCab	7	48	240	$a R_{\rm CN}$	3000	0.05
	3.7	96	351	$r \cdot N_{\rm RN} + a \cdot r_{\rm P}$	not tested	

- Additional energy consumption in the remote node (ventilation, AC-DC converter)
- Aggregation switches not measured yet

Energy consumption of fixed access networks. Measurements: FTTB and FTTH GPON systems.

	$P_{\rm NT}({\rm W})$	$N_{\rm RN}$	$P_{\rm RN}$ (W)	$N_{\rm CN}$	$P_{\rm CN}({\rm W})$	r _{max} (Gbit∕s)
FTTB	7	8	70	$a R_{\rm EN}$	1000	0.1
(PON)	3.7	24	44.5	$r \cdot N_{\rm RN} (1+a)$	1087	

- Distributed elements in the field
- Different granularities in the remote node

	$P_{\rm NT}({\rm W})$	$N_{\rm RN}$	$P_{\rm RN}$ (W)	$N_{\rm CN}$	$P_{\rm CN}({\rm W})$	r _{max} (Gbit/s)
FTTH	5	N/A	0	$aR_{\rm CN}$	1000	1.0
(PON)	5.61			r·(1+a)	968	

- Pure optical access network
- Good compliance of the values

Energy consumption of fixed access networks. Assumptions and selected measured values.

- Data sheets values (black)
- Selected measured values (magenta)

	$P_{\rm NT}({\rm W})$	$N_{\rm RN}$	$P_{\rm RN}$ (W)	$N_{\rm CN}$	$P_{\rm CN}$ (W)	r _{max} (Gbit/s)
FTTEx	7 not tested	960 <mark>960</mark>	1465 1 <mark>268</mark>	$\frac{a \cdot R_{\rm EN}}{r \cdot N_{\rm RN} + a \cdot r_{\rm P}}$	3000 not tested	0.02
FTTCab	7 3.7	48 96	240 <mark>35</mark> 1	$\frac{a \cdot R_{\rm EN}}{r \cdot N_{\rm RN} + a \cdot r_{\rm P}}$	3000 not tested	0.05
HFC	30	300	590	$16\frac{r_{\rm max}}{r}$	2800	0.052
FTTB (PtP)	7	8	70	$\frac{a \cdot R_{\rm EN}}{r \cdot N_{\rm RN} + a \cdot r_{\rm P}}$	3000	0.1
FTTB (PON)	7 3.7	8 24	70 44.5	$\frac{a \cdot R_{\rm EN}}{r \cdot N_{\rm RN}(1+a)}$	1000 1087	0.1
FTTH (PtP)	4	N/A	0	$\frac{a \cdot R_{\rm EN}}{r + a \cdot r_{\rm p}}$	3000	1.0
FTTH (PON)	5 5.61	N/A	0	$\frac{a \cdot R_{\rm CN}}{r \cdot (1+a)}$	1000 968	1.0

- Selected access systems measured in the laboratory until now:
 - FTTEx
 - FTTCab
 - FTTB (PON)
 - FTTH (PON)
- Measurements approximately compliant with numerical values

Energy consumption of fixed access networks. Selected results with measured values.

- FTTH: Good compliance
- FTTB: Differences due to different granularities
- FTTCab: Differences due to different granularities
- FTTEx: Good compliance

Increasing network's energy efficiency. Measurement of current DSL systems. FTTEx

CN

switch

- Power consumption of several days:
 - Day-night dependency recognizable
 - Small daily power variation due to customer's activities
- But compared to traffic variation the power variation is low
- Probable reason: "Always on" attitude broadly to be found

Increasing network's energy efficiency. Power reduction possibilities on DSL broadband systems.

DSL power management Definition of 3 modi, depending on customers communication activities. **VDSL** always on (today) Power VDSI power managed L0: Full On ADSI always on (today) L2: Low Power **ADSL** L3: Idle power managed time Note: VDSL power management is not standardised today.

Code of Conduct (CoC)– Future target values, proposal

		ADSL 2+	VDSL 2
2007	L0 (full power)	1,5 W	2,75 W
	L2 (low power)	-	-
	L3 (idle state)	-	-
2008	L0 (full power)	1,4 W	2,0 W
	L2 (low power)	1,1 W	-
	L3 (idle state)	0,8 W	1,0 W
2009	L0 (full power)	1,2 W	1,6 W
	L2 (low power)	0,8 W	1,2 W
	L3 (idle state)	0,4 W	0,8 W

[European Commission, Renewable Energies Unit: Code of Conduct on Energy Consumption of Broadband Equipment, Version 2. Ispra, 17 July 2007]

Increasing network's energy efficiency. Power Management in DSL systems.

- Energy consumption in the exemplary dense urban service area
- Power values taken from measurements
- Usage scenarios based on public studies
- Significant energy saving potential
- Power management not used due to QoS and line stability issues
- Inter layer effects not fully analysed

Energy consumption of fixed access networks. Broadband Migration: Extreme scenarios.

- Electronic broadband access network
- Broadband services delivery by DSL systems
- Drastic increase in power consumption

- Optical broadband access network
- FTTH as the target of broadband migration
- Opportunity for decreasing broadband access network's power consumption

 \Rightarrow High impact of broadband access technology and migration on the power consumption!

Home networks.

Increasing number of services and devices.

- A lot of different studies forecast dramatic growth of the internet due to "MultiMedia" traffic
 - Any kind of video (on demand, time shifted , aster than real-time)
 - Broadband Internet
 - Audio
 - Voice
 - Broadband services require associated home network components
- Increasing size of home networks with increasing number of devices
- Distributed equipment not fully utilized, e. g. in terms of storage capacity

Home networks

An extreme example of multimedia broadband home.

	Stand By Mode	Operation Mode	Operation Time per day (hour)	Energy per day (Watt Hour)
WiFi Radio 1	7,3	12,2	4	194,8
WiFi Radio 2	2,5	4,3	4	67,2
PC	2	110	4	480
PC Monitor	4	60	4	320
Laptop		42	4	168
OptoLan	1,1	1,1	4	26,4
Settopbox	15,8	17,8	4	387,2
VDSL - Modem		4,8	24	115,2
TV (Flat)	1,2	95	4	404
TV (20")	0,9	48	4	210
Router		5,6	24	134,4
NAS	0,1	12	3	38,1
ISDN		1,4	24	33,6
DECT		0,9	24	21,6
Total En	2600,5			

Germany \Rightarrow about 38 Million homes \Rightarrow scaling up to 4,1 GW. 36 TWh per year. T

Daily power consumption of a reference flat in a

Assumptions:	Standby Mode in W	Operation Mode in W	Operation Time per Day	Energy Wh
WLAN Radio 1	7	12	2	178
WLAN Radio 2	2	4	2	52
VDSL Modem		4,8	24	115,2
PC	2	110	2	264
PC Monitor	4	60	2	208
Settopbox	15,8	17,8	4	387,2
TV (Flat)	1,2	100	4	424
TV(2011)	0,9	45	2	109,8
Router		5,6	24	134,4
IP Phone		0,9	24	21,6
				1894,2

"ONT" provides VOIP functionality 24 h "Router" provides functionalities for PC, WLAN and Media receiver

How do things scale?

		GWh per	Part of a
W per HH	MW	annum	power plant
1	38	332,88	0,10
2	76	665,76	0,21
5	190	1664,4	0,52
10	380	3328,8	1,04
20	760	6657,6	2,09
50	1900 —	16644	5,22
100	3800	33288	10,43
200	7600	66576	20,87
500	19000	166440	52,17
1000	38000	332880	104,34

- Currently 38.000.000 (38 Mio.) households (HH) in Germany
- "Average" power plant in Germany has a capacity of 360 MW*
- 10 W average continuous load per HH is equal to 380 MW
- 10 W average continuous load per HH is equal to 3,3 TWh per annum

Source: Wikipedia, Photo Source; Wikipedia

. . . .

Basic Considerations- Energy Efficient Networks

Conclusion. Energy efficiency of Internet is a big issue. But be realistic!

Big share in operator networks: Access network part

Things that can help:

- Optical systems in wired access have the lowest consumption of power
- Dynamic resource control and management
 - Use of DSL power management in current broadband access systems
 - Making use of day-night utilization curves
- At the level of a national economy
 - Power consumption of multimedia home networks become an issue
- Energy consumption as a network design parameter
 - At architecture level
 - At system level

Thank you for your attention!

A. Gladisch⁽¹⁾, C. Lange⁽¹⁾, R. Leppla⁽²⁾

⁽¹⁾T-Systems Enterprise Services GmbH, Goslarer Ufer 35, 10589 Berlin, Germany ⁽²⁾Deutsche Telekom, T-Home, Heinrich-Hertz-Str. 3-7, 64295 Darmstadt, Germany andreas.gladisch@t-systems.com