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 1. Introduction  

This submission is aimed at contemporary research into human factors, human error and safety 
systems, and the ATSB use of the IPCC (Intergovernmental panel on climate change) verbal 
probabilities in their internal risk methodology process. 

The purpose of this submission is so the committee may consider what other experts say about risk 
communication using the IPCC methodology, human factors, human error and safety systems in the 
context of complex socio-technical systems.  

2. ATSB use of IPCC specific language to describe risk and probability in their methodology.  

In 2007, the ATSB adopted the definitions of probability in its analysis activities and for investigation 
reports from the Intergovernmental Panel on Climate Change (IPCC) . The IPCC in 2005 developed a 
standardised terminology to facilitate communication of uncertainty of technical information in its 
field. The IPCC definitions were a result of extensive and considerable rigour by international experts 
(ATSB, 2008).  

The research of Patt & Schrag (2003) found that the IPCC Third Assessment Report (AR 3) used 
words differently from the way lay readers of assessments do. Experiments on undergraduate 
science students confirmed that the language of the IPCC authors to describe uncertainty, depended 
only on the probability of the outcome or certainty which they believed would occur, and not on the 
events magnitude. The language that lay people use to discuss uncertainty and the meanings of the 
associated descriptors are event dependant and context driven, that is, the events total risk (Patt & 
Schrag, 2003). pp 28.  
 
When both the communicator and audience are using uncertainty descriptors to describe risk, and 
not probability, accurate understanding passes from communicator to audience without bias (see 
Brun & Teigen, 1988 in Patt & Schrag, 2003). pp 23.  
 
However, when communicators use verbal probabilities, the audience still interprets them as 
describing risk and thus, result in miscommunication. The results mean an audience can 
underweight probability of high magnitude events. It also suggests that probability descriptors are 
used and interpreted by people as containing information about event magnitude. People are also 
more likely to choose more certain sounding probability descriptors (eg., likely instead of unlikely) to 
discuss increasing severity consequences, and expect a certain amount of exaggeration about 
likelihood of severe consequence events (Patt & Schrag, 2003). pp 26.  
 

Patt & Schrag believed the use by the IPCC of a fixed scale verbal probability descriptor could 
introduce unintended bias of under-responding to aggregate risks. This means that the reader (or 
viewer) would need to scrutinise and carefully read the report. However, in the case where a report 
is not read carefully, bias enters when readers make intuitive judgements about likelihood when 
they fail to match verbal probabilities with probability ranges (Patt & Schrag, 2003). pp 29.  
 

The observation of Patt & Schrag (2003) regarding the risks of introducing intuitive judgement when 
using fixed scale of verbal probabilities seems to support the bias in scientific fields, such as earth 
science.  

The IPCC changed two elements of the verbal description of 'Extremely unlikely' and 'Medium 
Likelihood' to 'Exceptionally unlikely' and' About as likely as not' respectively in AR 3 to AR 4.  
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In AR 4,(2006) the IPCC codified linguistic terms to avoid ambiguity and introduced a "level of 
confidence" table based on the degree of understanding within an expert community when data is 
lacking or incomplete and  where subjective judgement is required (Risbey & Kandlikar, 2007). pp 20. 
However, Risbey & Kandlikar concluded that the "level of confidence" table should only be used to 
condition the form in which likelihood is expressed, rather than the value itself (Risbey & Kandlikar, 
2007). pp 30.  
 
I cannot find in the ATSB methodology their use of the "level of confidence" table as the IPCC 
introduced in 2006 (Risbey & Kandlikar, 2007) to validate their confidence of evidence. They appear 
to use their existence, importance and influence technique. 

If the ATSB methodology is unable to ascertain the most basic of safety issues, (see my third 
submission of the most obvious failed or absent risk controls), then this may require a review of the 
workability and validity of this ATSB existence, influence and importance approach to identification 
of safety issues.  

Identification of such issues is the prime responsibility of the ATSB under the TSI Act. ATSB have 
failed to recognise at least nine serious safety issues identified in the submissions to the committee. 

3. Some contemporary research on human factors, human error, human reliability and systems 
safety. 

French, et al, (2011) primarily wrote this paper in addressing the limitations of human reliability 
analysis (HRA) as a method used in quantitative risk assessment (QRA), however, the authors never 
the less provide useful insight into current limitations and contemporary thinking into the areas of 
human factors, human error, reliability and systems safety. 

"A key issue is that HRA focuses on human errors, whereas 
many systems failures may arise not just despite, but sometimes 
because of fully appropriate and rational behaviour on the part of 
those involved. Thus we need a broader understanding of human 
behaviour than that relating to human error. We also need to recognise 
that cultural, organisational, social and other contexts influence 
behaviour, perhaps correlating behaviour across a system, 
thus invalidating assumptions of independence commonly made 
in risk and reliability analyses. One of the flaws common to many 
current HRA methodologies is that they tend to focus on easily 
describable, sequential, generally low-level operational tasks. Yet 
the human behaviour that is implicated in many system failures 
may occur in other quite different contexts, maybe in developing 
higher level strategy or during the response to an unanticipated 
initiating failure event." French, et al, 2011, page 755 

"Much of the discussion around these models focussed on the issue 
that errors of omission (failures to respond to events appropriately) 
were considered easier to model than errors of commission, 
i.e. inappropriate human actions. However, this simplistic dichotomy 
now appears too stark in light of our current, richer, qualitative 
understandings of human cognition, motivation and decision 
making, including the effects of stress, emotion, training, group 
interactions, organisational structures, cultures and so forth 
(Bazerman, 1999, 2006; French et al., 2009; Kahneman et al., 
1982; Kahneman and Tversky, 2000). Research in these fields has 
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shown that there are systematic influences on decision making 
and behaviour that cannot be categorised simply as omissions or 
commissions": French, et al, 2011, page 756 

"But human behaviour can correlate the 
risks of failure of two or more barriers, and most systems also harbour 
the opportunity for the ‘bypass’ of these barriers. Human 
behaviour and propensity to failure varies in complex ways with, 
e.g., their tiredness, stress and general emotional state, which 
may well be influenced by external events leading to a common 
cause and which may disrupt several safety barriers simultaneously. 
For instance, the Chernobyl Accident (International 
Atomic Energy Agency, 1991; Marples 1997) was in large measure 
caused by the imperative to conduct an engineering experiment 
within a fixed time, leading to stress in the operators and behaviour 
that compromised several of the safety barriers simultaneously. Another 
potential unsafe behaviour is to discover an indication of a 
‘hole’ in one layer and to defer further investigation, relying on 
the ‘cover’ offered by other layers: such behaviour occurred during 
a recent leak of radioactivity at Sellafield (Adhikari et al., 2008). 
Hrudey et al. (2006) describe similar behaviour during the Walkerton 
drinking water tragedy in Ontario, where latent and active flaws 
left unaddressed exacerbated the impact of agricultural run-off 
infiltrating a town’s shallow groundwater supply. On the positive 
side, humans have the ability to recover, to respond to the unexpected, 
to think ‘out of the box’, and so on, effectively repairing a 
compromised layer or even introducing a new one – the latter is, 
of course, the principle of preventative risk management." French, et al, 2011, page 756 

"Errors are just one of a range of behavioural 
products of a number of individual and organisational precursors; 
they are not a class of behaviours that are entirely distinct from 
other behaviours and thus should not be considered in isolation. 
In the organisational context, it is often an external system or judgement 
that categorises a behaviour as an error rather than the behaviour 
itself being inherently and indisputably wrong." French, et al, 2011, page 757 

"Real human judgement and decision making is not as rational 
and analytic as one might wish. Since the early 1980s, psychologists 
have distinguished between two different forms of thinking 
(Chaiken et al., 1989)3: 
 
_ System 1 thinking, often referred to as ‘intuition’ or ‘gut reaction’ 
that involves a superficial analysis/interpretation of the 
relevant information based on much simpler forms of thinking 
on the fringes or outside of consciousness. 
 
_ System 2 thinking, characterised by conscious analytical 
thought that involves a detailed evaluation of a broad range of 
information, often based on a rule that is assumed to provide 
the ‘correct’ answer or solution." 
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"While formal risk assessment techniques have the characteristics 
of System 2 thinking, system operators may use System 1 
thinking in their day-to-day operations and responses to events. 
For example, a nuclear power plant is the outcome of considerable 
complex analysis, research and design, i.e. System 2 thinking. The 
operators of such a plant, however, do not typically engage in the 
same kind of analytical thinking as the system engineers and 
designers. The operators’ work comprises much more routine procedures 
and, where complex problems are faced, there is potential 
for operators to make them more manageable through System 1 
heuristics. It has become common to refer to much of System 1 
thinking as involving ‘heuristics and biases’, because of its deviation 
from the more rational, analytic System 2 thinking, though 
that terminology is as pejorative as the constant use of the term 
‘human error’ in HRA which we reject in this article."  

"It is of concern that very little use of this extensive, often empirically 
based literature has been made in developing HRA methodologies. 
Indeed, the mechanistic approach common to many such 
methodologies based on fault tree representations of human action 
assumes that the operators are using System 2 thinking when in all 
probability their intuitive responses and actions are guided by System 
1 thinking (Bargh et al., 1996)." 

This recognition that human behaviour is complex and driven by 
a range of internal and external factors leads us to question the value 
of terminology such as ‘error’, ‘slip’ or ‘failure’ within HRA. Human 
errors and faults are socially defined events: a perfectly 
reasonable action to one person may be an unreasonable failure to 
another (Hollnagel, 2000). Furthermore, however well judged a 
decision may be a priori, it may through ‘ill fortune’ lead to unwanted 
outcomes. Hence what may seem an error in hindsight 
may not be the outcome of irrational or erroneous choice. We 
should focus more on human behaviour in individual, group and 
organisational contexts and recognise its potential involvement in 
system failure – without the pejorative judgement of whether that 
behaviour is aberrant in any sense. For example, in the Three Mile 
Island Incident (Commission on the Three Mile Island Accident, 
1979) the initiating event – the formation of a hydrogen bubble 
which forced down cooling water exposing the core – had not been 
anticipated in the reactor’s design or safety studies. The operators 
not only did not recognise what was happening, but also had never 
anticipated that it might. It was an incident beyond their experience 
and imagination, in a very real sense outside of scientific and engineering 
knowledge as it stood then. The operators behaved entirely 
sensibly and in accordance with their mental models of what they 
believed was happening. There was no error in their behaviour in 
this respect, not at least in the sense of human error within HRA theory  
As we build and operate more and more complex systems, we 
should recognise that it is inevitable that we will encounter unanticipated 
events and conditions. Risk and reliability analyses need to 
take account of human responses to these and, although those responses 
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may indeed lead to untoward outcomes, it is far from clear 
that they should be dubbed errors. " French, et al, 2011, page 757, 758. 

 

Of particular note in the above  work, is that of the Systems 1 & 2  thinking. It may be that the ATSB 
SIIMS methodology, is using a Systems 2 type approach to its analysis, without consideration of the 
Systems 1 thinking of the operational persons involved in transport accidents and incidents. I have 
not used the SIIMS methodology so am unable to comment on that. 

However it seems that proven basic safety investigation methods have been disentangled in favour 
of a pure academic approach.  

If this is the case, the pure academic approach needs validation and scrutiny by peer experts in 
human factors, safety investigation and organisational systems safety. 

I hope this information and the attached research papers can assist the committee in its work. 

 

Yours sincerely, 

 

Bryan Aherne 
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In running our increasingly complex business systems, formal risk analyses and risk management tech-
niques are becoming more important part to managers: all managers, not just those charged with risk
management. It is also becoming apparent that human behaviour is often a root or significant contribut-
ing cause of system failure. This latter observation is not novel; for more than 30 years it has been recog-
nised that the role of human operations in safety critical systems is so important that they should be
explicitly modelled as part of the risk assessment of plant operations. This has led to the development
of a range of methods under the general heading of human reliability analysis (HRA) to account for the
effects of human error in risk and reliability analysis. The modelling approaches used in HRA, however,
tend to be focussed on easily describable sequential, generally low-level tasks, which are not the main
source of systemic errors. Moreover, they focus on errors rather than the effects of all forms of human
behaviour. In this paper we review and discuss HRA methodologies, arguing that there is a need for con-
siderable further research and development before they meet the needs of modern risk and reliability
analyses and are able to provide managers with the guidance they need to manage complex systems
safely. We provide some suggestions for how work in this area should develop. But above all we seek
to make the management community fully aware of assumptions implicit in human reliability analysis
and its limitations.
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1. Introduction

Complex systems are never 100% reliable: they fail, sometimes
catastrophically, more usually reparably. Perrow (1984, 1994) has
argued that failures are an inevitable consequence of the increas-
ll rights reserved.

siness School, Booth Street

h).
ing complexity of our systems. Whatever the case, inevitable or
not, failures undoubtedly occur. Even in systems that appear to
be largely technological rather than human, we find that in the
majority of cases there is a human element involved. Maybe some
erroneous or even malicious behaviour initiates the failure; maybe
the human response to some event is insufficient to avoid system
failure; or maybe the original design of the system did not antici-
pate a potential failure or unfavourable operating conditions.

Statistics show human error is implicated in (see also Hollnagel,
1993):
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� over 90% of failures in the nuclear industry (Reason, 1990a), see
also (United States Nuclear Regulatory Commission, 2002);
� over 80% of failures in the chemical and petro-chemical indus-

tries (Kariuki and Lowe, 2007);
� over 75% of marine casualties (Ren et al., 2008);
� over 70% of aviation accidents (Helmreich, 2000);
� over 75% of failures in drinking water distribution and hygiene

(Wu et al., 2009).

In addition to highly technological industries, there are other
complex systems involving applications of technology in which
we include complex mathematical modelling, software and web-
based systems. The growth of service industries with new business
models implies an even greater dependence of businesses, organi-
sations and even economies on reliable human interactions. For in-
stance, recently human checks and balances failed to detect
dubious investment behaviour of a trader at Société Générale and
led to a loss of some €4.9bn, large enough to have economic and
financial effects beyond the bank. The current ‘credit crunch’ owes
not a little to misjudgement and error in the banking and finance
sectors, indicating the growing interdependence of many disparate
parts of the modern global economy. It also owes a lot to a loss of
investors’ confidence and trust, both of which inform human
behaviour. These data indicate how vulnerable our systems are,
even after many years of refinement and improvement; and how
important an understanding of human behaviour is if we are to re-
duce the risk to systems. Another high profile example is the leak
in the THORP plant at Sellafield (Thermal Oxide Reprocessing
Plant) that was discovered in 2005 (see Board of Inquiry, 2005).
This relatively modern plant had been designed to a high standard
of safety, but information indicating a system problem was avail-
able for some months and yet went unnoticed. Despite previous
incidents in 1998 and earlier in 2005, the information that should
have suggested a leak, or at least a problem requiring investigation,
was misinterpreted. The prevailing attitude was that the system
was error-free and hence information that could suggest the con-
trary was ignored or dismissed.

Managerial processes are critical to successful operation of any
complex system; and the quality of management processes de-
pends on their understanding of the import and limitations of the
results of the risk (and other) analyses that are provided to them.
We emphasise here that all managers, whether or not they have
an explicit responsibility for risk management, need to have some
understanding of the assumptions and limitations of such analyses.
In this article, we examine current and past approaches to human
reliability analysis (HRA). We discuss its assumptions, limitations
and potential in qualitative terms so that managers can better as-
sess the value of the information that it provides them and so man-
age risks more effectively. We also suggest that further
development of HRA methodologies should take more account of
the managerial practices that could be applied to reduce the failures
that occur at the interface of human behaviour and technology.

Managers understand human behaviour; good managers under-
stand human behaviour extremely well. To bring out the best in a
team one needs to know how each will respond to a request, an
instruction, an incentive or a sanction. Yet only the most foolhardy
and overconfident of managers would claim that they can predict
human behaviour perfectly all the time – or even 95% of the time.
The problem is that we often need to design systems with very
high reliabilities, many times with overall failure rates of less than
1 in 10 million (i.e. 1 in 10�7). To design and analyse such systems
we need a deep understanding of human behaviour in all possible
circumstances that may arise in their management and operation.
And that is the challenge facing HRA. Our current understanding of
human behaviour is not sufficiently comprehensive: worse, current
HRA methodologies seldom use all the understanding that we do
have.

Of course, there is a trivial mathematical answer to this. If we
are to achieve an overall system reliability of 10�7, we do not need
humans to be perfectly reliable. We simply need to know how reli-
able they are and then ensure that we arrange and maintain suffi-
cient safety barriers around the system to ensure that overall
system failure probabilities are as low as required. Suppose we
construct seven independent safety barriers perhaps some involv-
ing humans, some purely technological and suppose each has a
probability of 1 in 10 of failing, then arranging them (conceptually)
in sequence so that the whole system fails if and only if every one
of the seven fails gives an overall probability of system failure of

1
10
� 1

10
� 1

10
� 1

10
� 1

10
� 1

10
� 1

10
¼ 10�7:

The problem with this is that there are few barriers that are
truly independent, most systems offer opportunities to ‘bypass’
these barriers. Moreover, human behaviour tends to introduce sig-
nificant correlations and dependencies which invalidate such cal-
culations, reducing the benefit that each extra safety barrier
brings; such problems with protective redundancy are well known
(for example, Sagan, 2004). So the simplistic calculation does not
apply, and we shall argue that we have yet to develop sufficiently
complex mathematical modelling techniques to describe human
behaviour adequately for risk and reliability analyses.

In many ways the roles of risk and reliability analysis in general
and of HRA in particular are often misunderstood by system
designers, managers and regulators. In a sense they believe in the
models and the resulting numbers too much and fail to recognise
the potential for unmodelled and possibly unanticipated behav-
iours – physical or human – to lead to overall system breakdown
(cf. French and Niculae, 2005). Broadly there are two ways in which
such analyses may be used.

� When HRA is incorporated into a summative analysis, its role is
to help estimate the overall failure probabilities in order to sup-
port decisions on, e.g., adoption, licensing or maintenance. Such
uses require quantitative modelling of human reliability; and
overconfidence in these models can lead to overconfidence in
the estimated probabilities and poor appreciation of the overall
system risks.
� There are also formative uses of HRA in which recognising and

roughly ranking the potential for human error can help improve
the design of the system itself and also the organisational struc-
tures and processes by which it is operated. Effective HRA not
only complements sound technical risk analysis of the physical
systems, but also helps organisations develop their safety cul-
ture and manage their overall risk. Indeed, arguably it is
through this that HRA achieves its greatest effect.

These uses are not independent – in designing, licensing and
managing a system one inevitably iterates between the two – they
do differ, however, fundamentally in philosophy. In summative
analysis the world outside the system in question learns from the
outcome of an analysis; in formative analysis the world inside the
system learns from the process of analysis. In summative analysis
the ideal is almost to be able to throw away the process and deal only
with the outcome; in formative analysis the ideal is almost to throw
away the outcome and draw only from the process. While we believe
that HRA has a significant potential to be used more in formative
ways; we are concerned at its current ability to fulfil a summative
role, providing valid probabilities of sequences of failure events in
which human behaviour plays a significant role. We believe that
there is scope for considerable overconfidence in the summative
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power of HRA currently and that management, regulators and soci-
ety in general need to appreciate this, lest they make poorly founded
decisions on regulating, licensing and managing systems.

The four of us were part of a recent UK EPSRC funded multi-dis-
ciplinary project Rethinking Human Reliability Analysis Methodolo-
gies to survey and critique HRA methodologies (Adhikari et al.,
2008). Our purpose in this paper is to draw out the relevant conclu-
sions from this project for the management community and, per-
haps as well, for our political masters who create the regulatory
context in which complex systems have to operate. Overall we be-
lieve that current practices in and uses of HRA are insufficient for
the complexities of modern society. We argue that the summative
outputs of risk and reliability analyses should be taken with the
proverbial pinch of salt. But not all our conclusions will be negative.
There is much to be gained from the formative use of HRA to shape
management practices and culture within organisations and soci-
ety which can lead to better, safer and less risky operations.

In the next section we briefly survey the historical development
underlying concepts of HRA and its role in risk and reliability anal-
yses. We reflect on the widely quoted Swiss Cheese Model (Reason,
1990b), which seeks to offer a qualitative understanding of system
failure – though we shall argue that it may actually lead to system-
atic misunderstandings! In Section 0 we turn to modern theories of
human behaviour, particularly those related to judgement and
decision. A key issue is that HRA focuses on human errors, whereas
many systems failures may arise not just despite, but sometimes
because of fully appropriate and rational behaviour on the part of
those involved. Thus we need a broader understanding of human
behaviour than that relating to human error. We also need to rec-
ognise that cultural, organisational, social and other contexts influ-
ence behaviour, perhaps correlating behaviour across a system,
thus invalidating assumptions of independence commonly made
in risk and reliability analyses. One of the flaws common to many
current HRA methodologies is that they tend to focus on easily
describable, sequential, generally low-level operational tasks. Yet
the human behaviour that is implicated in many system failures
may occur in other quite different contexts, maybe in developing
higher level strategy or during the response to an unanticipated
initiating failure event. In recent years there have been many stud-
ies of organisational forms which seem to be more resilient to sys-
tem failures than might be expected and we discuss such studies of
high reliability organisations (HROs) briefly in Section 0. Another
flaw common to many current HRA methodologies is the lack of
specification of the domain of applicability – hence making it diffi-
cult to select appropriate methods for a given problem. Therefore
in Section 0, we use Snowden’s Cynefin classification of decision
contexts (Snowden, 2002; Snowden and Boone, 2007) to categorise
different circumstances in which human behaviour may be in-
volved in system failure. We believe that the use of Cynefin – or
a similar categorisation of decision contexts – can help in delineat-
ing when different HRA methodologies are appropriate. Moreover,
it points to areas in which we lack a really sound, appropriate HRA
methodology. Our final two sections draw our discussion to a close,
suggesting that:

� by drawing together current understandings from HRA with
other domains of knowledge in behavioural, management and
organisational theories, we can make better formative use of
HRA in designing systems, process and the organisations that
run these;

but that:

� the state of the art in quantitative HRA is too poor to make the
summative assessments of risk and reliability that our regula-
tors assume, and that society urgently needs to recognise this.
2. HRA methodologies and the Swiss cheese model

Reliability analysis and risk analysis are two subjects with a
great deal of overlap (Aven, 2003; Barlow and Proschan, 1975; Bed-
ford and Cooke, 2001; Høyland and Rausand, 1994; Melnick and
Everitt, 2008). The former is generally narrower in scope and tends
to deal with engineered systems subject to repeated failures and
the need for preventative maintenance policies to address these.
Key concepts in reliability engineering include component avail-
ability, reliability and maintainability; mean times to, and between
failure; the use of specific fault tree and failure mode tools; and the
concepts of system redundancy. Reliability engineering owes a sig-
nificant amount to advances in manufacturing engineering and the
desire to improve production quality and optimise output (Lewis,
1994). Risk analysis is a much broader term and tends to deal with
more one-off failures that may write-off a system with concomi-
tant impacts elsewhere. It is not necessarily restricted to technical
systems and has developed into a broad interdisciplinary field with
important inputs from the social sciences, alongside applied math-
ematics and decision science. But both reliability engineering and
risk analysis are essentially are concerned with anticipating possi-
ble failures and assessing their likelihood. HRA specifically relates
to methodologies for anticipating and assessing the effect of those
failures which relate to human action or inaction, and not the fail-
ure of some physical component.

There are many reasons why one might undertake a risk or reli-
ability analysis. In broad terms the first three items in our list re-
late to formative uses of risk and reliability analysis and the last
two to summative uses.1

1. The designers of a system may be concerned with ‘designing
out’ the potential for system failure. Part of this involves analys-
ing how human behaviour may affect the system in its potential
both to compromise its reliability and to avoid the threat of
imminent failure.

2. Sometimes an organisation wants to restructure and change its
reporting structures. In such circumstances, it may wish to
understand how its organisational design may affect the reli-
ability and safety of its systems; and in turn that understanding
may inform the development of its operating practices and
safety culture.

3. There may be a need to modify a system in which case there are
needs to design the modification and the project to deliver the
modification.

4. During licensing discussions between a government regulator
and the system operator there may be a need to demonstrate
that a system meets a safety target. An assessment of the risks
arising from human behaviour will be an integral part of this.

5. There may be a need to choose which of several potential sys-
tems to purchase and the risk of system failure may be a poten-
tial differentiator between the options. Such differences may
not be purely technical, since some systems may be more or
less at risk from some human behaviours.

As a component of a full risk or reliability analysis, HRA may be
used in any of these ways.

The origins of HRA lie in the early probabilistic risk assessments
performed as part of the US nuclear energy development pro-
gramme in the 1960s (Bedford and Cooke, 2001; United States Nu-
clear Regulatory Commission, 1975) Early first generation HRA
methods such as the Technique for Human Error Rate Prediction
(THERP) (Swain and Guttmann, 1983) were very similar to those
in other areas of reliability analysis: namely, the probability of a



Fig. 1. Reason’s Swiss cheese model (Reason, 1990b).
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human error is assessed via a simple event tree analysis. The event
tree simply listed an initiating event’, which might be a system er-
ror reaching the human operator, and then considered a series of
tasks that which had to be correctly carried out to prevent un-
wanted consequences. Essentially, in these early models, the hu-
man operator is treated as another component in the system.
Hollnagel (1993) referred to this general approach as decomposi-
tion. A variety of other first generation methods have been devel-
oped with broadly similar features to THERP – the use of task
analysis, use of nominal probabilities for task failure, adjustment
factors to take account of different performance conditions, error
factors and so on. The Human Reliability Analysis Event Tree method
(HEART) (Williams, 1985) is a good example of a method that aims
to use many of the same features but in a simplified setting to give
a more straightforward approach. Recognising that many tasks
have an associated time for completion, the Human Cognitive Reli-
ability method (HCR) (Hannaman et al., 1984) modelled the time to
successful completion. A wider review of these and many other
methods is given in Kirwan (1994).

Much of the discussion around these models focussed on the is-
sue that errors of omission (failures to respond to events appropri-
ately) were considered easier to model than errors of commission,
i.e. inappropriate human actions. However, this simplistic dichot-
omy now appears too stark in light of our current, richer, qualita-
tive understandings of human cognition, motivation and decision
making, including the effects of stress, emotion, training, group
interactions, organisational structures, cultures and so forth
(Bazerman, 1999, 2006; French et al., 2009; Kahneman et al.,
1982; Kahneman and Tversky, 2000). Research in these fields has
shown that there are systematic influences on decision making
and behaviour that cannot be categorised simply as omissions or
commissions: see Section 0 below. Human failure is far more com-
plex than the failure of, say, a steel support beam or a hard disk. To
be fair, second2 generation HRA methods (Barriere et al., 2000; Hol-
lnagel, 1993) attempted to incorporate contextual effects such as
tiredness, stress and organisational culture on an operator’s prone-
ness to error; and third generation HRA methods (Boring, 2007;
Mosleh and Chang, 2004) have sought to allow for the potential var-
iation in response and recovery actions once an error chain has be-
gun. Notwithstanding this, we argue that far more development is
needed before any method takes account of all our current under-
standings of human behaviour.

Surveys of current HRA methodologies may be found in Adhik-
ari et al. (2008), Forester et al. (2006) and Hollnagel (1993, 1998).
For other recent research and developments in HRA, see the special
issue of the Journal of Loss Prevention in the Process Industries (2008,
21, 225-343). Software reliability analysis also has a large litera-
ture (Courtois et al., 2000; Lyu, 2005; Zhang and Pham, 2000). Soft-
ware engineering is largely an endeavour of human design and
thus subject to all the risks that HRA seeks to explore and assess.
To date, software reliability assessment has, by and large, also
adopted a mechanistic or empirical modelling of human error sim-
ilar in methodology to current quantitative HRA.

Reason (1990b) offered a metaphor for system failure involving
human error likening failure processes to movements of slices of
Swiss cheese relative to each other: see Fig. 1. Essentially this sug-
gested that systems do not fail because of a single failure, but be-
cause several elements fail near simultaneously, as if the holes in
slices of Swiss cheese have aligned. Although it is clear from his
writings that Reason knew the limitations of metaphors (Reason,
1995, 1997), his readers have often interpreted the model too
mechanistically. There has been a dominant tendency to imagine
2 One should not take too chronological perspective on first, second and third
generation HRA methods. Some of those developed earliest did make attempts to
account for contextual effects (Adhikari et al. 2008).
a fixed number of slices, sliding backwards and forwards indepen-
dently of each other until a series of holes align. In safety studies
one talks of the number of safety barriers (the multi-barrier con-
cept) or layers between normal operation and system failure; and,
in a sense, the slices of Swiss Cheese mirror these. Systems are de-
signed with a set number of safety barriers and these barriers are
intended to be independent: cf. the simplistic calculation of a fail-
ure rate of 1 in 107 above. But human behaviour can correlate the
risks of failure of two or more barriers, and most systems also har-
bour the opportunity for the ‘bypass’ of these barriers. Human
behaviour and propensity to failure varies in complex ways with,
e.g., their tiredness, stress and general emotional state, which
may well be influenced by external events leading to a common
cause and which may disrupt several safety barriers simulta-
neously. For instance, the Chernobyl Accident (International
Atomic Energy Agency, 1991; Marples 1997) was in large measure
caused by the imperative to conduct an engineering experiment
within a fixed time, leading to stress in the operators and behaviour
that compromised several of the safety barriers simultaneously. An-
other potential unsafe behaviour is to discover an indication of a
‘hole’ in one layer and to defer further investigation, relying on
the ‘cover’ offered by other layers: such behaviour occurred during
a recent leak of radioactivity at Sellafield (Adhikari et al., 2008).
Hrudey et al. (2006) describe similar behaviour during the Walker-
ton drinking water tragedy in Ontario, where latent and active flaws
left unaddressed exacerbated the impact of agricultural run-off
infiltrating a town’s shallow groundwater supply. On the positive
side, humans have the ability to recover, to respond to the unex-
pected, to think ‘out of the box’, and so on, effectively repairing a
compromised layer or even introducing a new one – the latter is,
of course, the principle of preventative risk management.

In terms of the Swiss Cheese model, many of these failings cor-
respond to varying the size of the holes, perhaps in a correlated
fashion, and maybe varying the number of layers over time. Reason
himself discusses similar criticisms (Reason, 1995, 1997); but the
simpler mechanistic thinking implicit in Fig. 1 still pervades think-
ing in much of reliability engineering (Perneger, 2005). The model
visually emphasises a reductionist approach to HRA and may thus
‘wrong-foot’ the users of reliability analysis methodologies leading
them to miss some of the key factors and mechanisms that should
be built into their models; and, perhaps, put too much trust in the
combined effect of several safety barriers. For example, it could be
argued that the model struggles to fully represent the motives that
might accompany deliberate violations of procedure, the creeping
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loss of vigilance with respect to a safety culture or the very real
opportunities for the bypass of barriers in most technological
systems.

We note that there is an established literature stemming from a
range of work in France on the need to moderate reductionist,
decomposable approaches to human reliability – or as they some-
times term it, ‘human factors of reliability’ – with an understand-
ing of organisational, management and process contexts which
can introduce dependencies (Fadier, 2008; Fadier and Ciccotelli,
1999; Fadier and De la Garza, 2006; Leplat, 1994).
3 There is an unfortunate conflict of terminology here between our use of ‘system’
to mean the entire plant and processes which is at risk and ‘systems of thinking’ as
referred to in the psychological literature. We use the phrases ‘System 1 (or 2)
thinking’ to distinguish the latter.

4 Of course, one might hope that if operators have been subject to many training
exercises, then their responses may be closer to those that would arise from System 2
thinking.
3. Human behaviour and human error

Human behaviour is complex and often non rational. For in-
stance, it seems sensible to use modern technological advances
to make the physical components of a system safer. But there is
some evidence that making subsystems safer could make the over-
all system less safe because of the propensity of humans to take
less care personally when a system takes more care (Adams,
1988; Hollnagel, 1993). In this section we survey some recent find-
ings from behavioural decision studies and consider how this area
of theory and research can add to HRA. We do not focus on error
behaviours per se, but take a more holistic approach. We do this
for three reasons.

First, the error focus of HRA models may be too narrow
(Hollnagel, 1998, 2000). Errors are just one of a range of behavioural
products of a number of individual and organisational precursors;
they are not a class of behaviours that are entirely distinct from
other behaviours and thus should not be considered in isolation.
In the organisational context, it is often an external system or judge-
ment that categorises a behaviour as an error rather than the behav-
iour itself being inherently and indisputably wrong.

Second, models of HRA that explicitly include human factors
typically focus on cognitive aspects of decision making. Recent
developments in the modelling of decision making emphasise the
dual influences of cognition and emotion on decision outcomes
(French et al., 2009; Loewenstein et al., 2001; Slovic et al., 2004).
The integration of emotions and cognition models of decision mak-
ing has improved the ability of such models to understand and pre-
dict behaviour (Phelps, 2006). Furthermore, such an integrated
approach is highly relevant to the risk-related decision making
typically found within safety critical industries (Fenton-O’Creevy
et al., 2008; Finucane et al., 2000).

Third, the use of high reliability systems designed and engi-
neered to minimise errors and hazards has both benefits and disad-
vantages. It is of course important that systems are designed to be
as safe as possible. However, the reliance on such systems can
cause biases and flaws in decision making. The risk thermostat
model suggests there is a dynamic interaction between actors’ per-
ceptions and behaviours and their environment (Adams, 1988;
Wilde, 1982, 1998). People will adjust their behaviour to be more
or less risky, as appropriate for their preferences and their situa-
tion, perhaps relying on one safety system to protect them from
the risk of failing to operate another. A high profile example is
the leak in a modern plant at Sellafield mentioned previously.
There was a belief that such a modern plant could not suffer from
leaks or other failures. In the context of the ‘new plant’ culture and
other management imperatives, it was too easy to ignore inconclu-
sive but pertinent readings and observations. It is also noteworthy
that this ‘new plant’ culture was implicated in two previous smal-
ler incidents at Sellafield (Adhikari et al., 2008; Board of Inquiry,
2005). Marcus and Nichols (1999) discuss similar behaviours in
which warning signs were not heeded and suggest that other pri-
orities for limited resources make it too easy to drift towards what
they term the ‘safety border’.
Real human judgement and decision making is not as rational
and analytic as one might wish. Since the early 1980s, psycholo-
gists have distinguished between two different forms of thinking
(Chaiken et al., 1989)3:

� System 1 thinking, often referred to as ‘intuition’ or ‘gut reac-
tion’ that involves a superficial analysis/interpretation of the
relevant information based on much simpler forms of thinking
on the fringes or outside of consciousness.
� System 2 thinking, characterised by conscious analytical

thought that involves a detailed evaluation of a broad range of
information, often based on a rule that is assumed to provide
the ‘correct’ answer or solution.

While formal risk assessment techniques have the characteris-
tics of System 2 thinking, system operators may use System 1
thinking in their day-to-day operations and responses to events.
For example, a nuclear power plant is the outcome of considerable
complex analysis, research and design, i.e. System 2 thinking. The
operators of such a plant, however, do not typically engage in the
same kind of analytical thinking as the system engineers and
designers. The operators’ work comprises much more routine pro-
cedures and, where complex problems are faced, there is potential
for operators to make them more manageable through System 1
heuristics. It has become common to refer to much of System 1
thinking as involving ‘heuristics and biases’, because of its devia-
tion from the more rational, analytic System 2 thinking, though
that terminology is as pejorative as the constant use of the term
‘human error’ in HRA which we reject in this article.

There is an extensive literature on decision making heuristics
and biases (French et al., 2009; Kahneman et al., 1982; Kahneman
and Tversky, 2000). Numerous studies have demonstrated the exis-
tence of systematic and robust cognitive biases, and are well sum-
marised by Bazerman (2006). For example, emotionally-laden or
otherwise individually salient information is recalled easily and
likely to be considered as significant to a decision when more
objective evidence shows that other types of information are more
important to a decision. The processes that drive such biases have
not arisen without reason – we cannot take into account all the
information that surrounds us and so we need to select informa-
tion to attend to in order for any action to be taken. The work of
Gigerenzer and colleagues has shown that some heuristics can im-
prove decision making by providing rapid mechanisms for recall of
salient information and execution of choice behaviours (Goldstein
and Gigerenzer, 2002). However, such biases can be problematic.
For example, Willman et al. (2001) and Fenton-O’Creevy et al.
(2003) explored the dislocation between pure financial theories
and the collective and individual behaviours of market traders.
Their research showed that biases led to ineffective decision mak-
ing and reduced performance.

It is of concern that very little use of this extensive, often empir-
ically based literature has been made in developing HRA method-
ologies. Indeed, the mechanistic approach common to many such
methodologies based on fault tree representations of human action
assumes that the operators are using System 2 thinking when in all
probability their intuitive responses and actions are guided by Sys-
tem 1 thinking (Bargh et al., 1996).4 HRA methodologies should
model the thinking and behaviours that are likely to occur rather
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than more rational, analytic actions and responses that one should
like to think would occur.

In fairness to some current approaches to quantitative HRA,
their proponents would not claim to be modelling actual behav-
iour, whether it be driven by System 1 or System 2 thinking; nor
to be seeking a ‘correct’ answer to a quantitative problem. When
risk analysis is used formatively, its purpose is to understand bet-
ter systems and identify the key drivers of risk, rather than chase
quantified estimates per se. Current HRA methods may help iden-
tify the key drivers relating to human behaviour, irrespective of
what is going on inside people’s heads and whatever organisational
and environment contexts that surround them. However, such ap-
proaches do need data: and while there is generally no great prob-
lem in finding data relating to normal operations, appropriate data
are – fortunately! – sparse in most contexts relating to serious sys-
tem failures.

If we are to model actual behaviour in a variety of circumstances,
then the concept of self-regulation may be needed. Individual self-
regulation is defined as the internal and behavioural adjustments
that function to maintain factors such as cognitions, emotions and
performance within acceptable limits (Lord and Levy, 1994). This
approach to modelling behaviour proposed that behaviour is goal
orientated and there are internal, hierarchical processes that enable
people to put thoughts into actions through activation and inhibi-
tion of decision making processes (Carver and Scheier, 1981). Some
of the decision processes take place at a subconscious level and
never reach conscious deliberation, a process called automaticity
(Bargh and Chartrand, 1999). Thus, there is a dynamic interaction
between people and their environment that is designed for effective
behaviour. Models of decision making and behaviour that incorpo-
rate optimal levels of functioning have a long history and a range of
organisational applications. For example, Yerkes and Dodson (1908)
introduced an inverted U model of the association between perfor-
mance and arousal. More recent models of work performance show
similar patterns: some effort and pressure can be effective, too
much of either leads to burnout (Schaufeli and Bakker, 2004). The
organisational context must be considered both as an influence on
individual level decision making and as an integral outcome of indi-
vidual and group decision making processes. Choices are made at all
levels of organisational design that are potentially subject to the
same processes of automaticity, flawed biases and self-regulation
as individual decision making.

This recognition that human behaviour is complex and driven by
a range of internal and external factors leads us to question the va-
lue of terminology such as ‘error’, ‘slip’ or ‘failure’ within HRA. Hu-
man errors and faults are socially defined events: a perfectly
reasonable action to one person may be an unreasonable failure to
another (Hollnagel, 2000). Furthermore, however well judged a
decision may be a priori, it may through ‘ill fortune’ lead to un-
wanted outcomes. Hence what may seem an error in hindsight
may not be the outcome of irrational or erroneous choice. We
should focus more on human behaviour in individual, group and
organisational contexts and recognise its potential involvement in
system failure – without the pejorative judgement of whether that
behaviour is aberrant in any sense. For example, in the Three Mile
Island Incident (Commission on the Three Mile Island Accident,
1979) the initiating event – the formation of a hydrogen bubble
which forced down cooling water exposing the core – had not been
anticipated in the reactor’s design or safety studies. The operators
not only did not recognise what was happening, but also had never
anticipated that it might. It was an incident beyond their experience
and imagination, in a very real sense outside of scientific and engi-
neering knowledge as it stood then. The operators behaved entirely
sensibly and in accordance with their mental models of what they
believed was happening. There was no error in their behaviour in
this respect, not at least in the sense of human error within HRA the-
ory. As we build and operate more and more complex systems, we
should recognise that it is inevitable that we will encounter unantic-
ipated events and conditions. Risk and reliability analyses need to
take account of human responses to these and, although those re-
sponses may indeed lead to untoward outcomes, it is far from clear
that they should be dubbed errors.

4. High reliability organisations

The past 20 years has seen several studies of high reliability
organisations (HROs), which Roberts (1990) defined as organisa-
tions failing with catastrophic consequences less than one time
in 10,000. These studies recognise that certain kinds of social orga-
nisation are capable of making even inherently vulnerable technol-
ogies reliable enough for a highly demanding society.

An HRO encourages a culture and operating style which empha-
sises the need for reliability rather than efficiency (Weick, 1987). As
organisations, HROs emphasise a culture of learning, although they
clearly do not rely in any sense of learning from mistakes! Instead,
HROs resort to learning from imagination, vicarious experience, sto-
ries, simulations and other symbolic representations (Weick, 1987).
They emphasise a culture of sharing of learning and knowledge, of
mental models: ‘heedful inter-relating’ (Weick and Roberts, 1993),
‘collective mindfulness’ (Weick et al., 1999), ‘extraordinarily dense’
patterns of cooperative behaviour (La Porte, 1996) and ‘shared situ-
ation awareness’ (Roth et al., 2006). Usually HROs apply a strategy of
redundancy (Rochlin et al., 1987) with teams of operators ‘watching
each others backs’. As noted, it is suggested that teams share com-
mon mental models of both their internal organisational processes
and the external world (Mathieu et al., 2000; Smith-Jentsch et al.,
2005). Redundancy may increase complexity of operations as it
makes the operations system less easily understood or opaque (Per-
row, 1984; Sagan, 1993). However, redundancy also increases the
probability or chance of getting adequate information to solve prob-
able dangers, consequently reducing the risks arising from complex-
ity rather than increasing them. When necessary, HROs try to
decentralise the authority of senior teams or management responsi-
ble for decision making. Rijpma (1997) suggests that HROs use
decentralisation to enable those working closest to any problems
to address and solve them as they emerge or become apparent. Using
this method rapid problem solving is achieved, resulting in an in-
crease in reliability and reduction of the risk of accidents occurring
in highly critical situations. This decentralisation may increase the
complexity of the organisation as knowledge and lines of authority
need to be distributed, but La Porte (1996) suggests the balance of
these opposing effects can lie in the direction of higher reliability.

There are several challenges that have been mounted to the
HRO line of work. First, some suggest that HRO perspectives are
heavily functionalist and neglect politics and group interests (Per-
row, 1994; Sagan, 1993, 1994). A second criticism relates to the ab-
sence of validation for the empirical studies underpinning HRO
theory (Clarke, 1993; Perrow, 1994; Sagan, 1993). Critics argue
that the context of some of the most important HRO studies, e.g.
on the flight decks of aircraft carriers, is misleading, with evidence
of safety only in simulated rather than actual operations. Others ar-
gue that the mechanisms and qualities that are said to underlie the
achievement of high reliability are neither particularly characteris-
tic of HROs nor unequivocally good for reliability. But the HRO
work has given us an insight into the way in which error and
failure is managed by social organisations, and how collective,
rather than individual, phenomena like collective mindfulness
(Weick et al., 1999) are what produce reliability in the face of sup-
posedly unreliable individuals and unreliable technologies. The
emphasis of HRA on individuals and on atomised tasks therefore
misses the probability that collective actions and behaviours might
lead to or avert system failure.
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There would seem to be considerable potential for formative
uses of HRA to influence the development of HRO theory, at least
in so far as it can be applied in system and organisational design;
and vice versa, complementing the work of, e.g., Grabowski and
Roberts (1999).

5. Decision contexts

There is a further aspect of context that HRA should consider:
decision context. The judgements and decisions needed of humans
in a system can vary from those needed to perform mundane
repetitive operational tasks through more complex circumstances
in which information needs to be sought and evaluated to identify
appropriate actions to the ability to react to and deal with un-
known and unanticipated. Decision processes will vary accord-
ingly. Design decisions can inadvertently introduce further risks
to the system that arise from limitations inherent in human fore-
sight. This means that the appropriate HRA methodology to assess
the risks associated with the human decision making behaviour
may vary with the details of that context.

Cynefin is a conceptual framework developed by Snowden
which, among other things, offers a categorisation of decision con-
texts (Snowden, 2002; Snowden and Boone, 2007). The Cynefin
model roughly divides decision contexts into four spaces: see
Fig. 2. In the known space, or the Realm of Scientific Knowledge,
the relationships between cause and effect are well understood.
All systems and behaviours can be fully modelled. The conse-
quences of any course of action can be predicted with near cer-
tainty. In such contexts, decision making tends to take the form
of recognising patterns and responding to them with well re-
hearsed actions. Klein (1993) discusses such situations as recogni-
tion primed decision making. In the knowable space, the Realm of
Scientific Inquiry, cause and effect relationships are generally
understood, but for any specific decision there is a need to gather
and analyse further data before the consequences of any course
of action can be predicted with any certainty. Decision making
can be proceduralised with clear guidance decided a priori. In the
complex space, often called the Realm of Social Systems though
such complexity can arise in environmental, biological and other
contexts, decision making situations involve many interacting
causes and effects. Knowledge is at best qualitative: there are sim-
ply too many potential interactions to disentangle particular
causes and effects. Before decisions can be made, it is necessary
to think widely, explore issues, frame the problem and develop
broad strategies that are flexible enough to accommodate changes
as the situation evolves. Much judgement and expertise will be
needed in making the decision itself. Finally, in the chaotic space,
situations involve events and behaviours beyond our current expe-
rience and there are no obvious candidates for cause and effect.
Decision making cannot be based upon analysis because there
are no concepts of how separate entities and predict their interac-
tions. Decision makers will need to take probing actions and see
what happens, until they can make some sort of sense of the situ-
ation, gradually drawing the context back into one of the other
spaces. The boundaries between the four spaces should not be ta-
ken as hard. The interpretation is much softer with recognition that
there are no clear cut boundaries and, say, some contexts in the
knowable space may well have a minority of characteristics more
appropriate to the complex space.

The Cynefin framework provides a structure in which to articu-
late some concerns about the use if HRA in risk and reliability anal-
ysis and in relation to hro studies.

� First generation HRA methodologies and arguably most of sec-
ond and third generation ones focus on repetitive, operational
tasks that lie in the known or, perhaps, knowable spaces. Yet
many of the perceived risks in modern systems arise because
of their inherent complexity (Perrow, 1984, 1994). In other
words, we need be concerned with human behaviour as manag-
ers and operators strive to deal with events happening in the
complex or even chaotic spaces. The Chernobyl Accident was
initially managed as if it were in the known and knowable
spaces, yet it was one of the most complex socio-technical acci-
dents that have occurred (French and Niculae, 2005). In the
Three Mile Island Accident initially there was no conceptual
understanding of the processes by which a hydrogen bubble
might form and hence decision making in the first hours and
days of handling the incident took place in the chaotic space.
� It is informative to read HRO studies from the perspective of

Cynefin. For instance, Weick’s (1987) discussion moves from
discussions of how air traffic controllers manage flights in a
highly reliable way – a repetitive task in the known/knowable
spaces – and uses these to discuss how teams might react to
complex events such as Bhopal, the decision to launch Chal-
lenger and the Three Mile Island Accident. It is far from clear
that organisational practices that enable repetitive, intrinsically
dangerous operations to be carried out safely can be used to
develop organisational preparedness dealing with complex sit-
uations that bring many risks, some quite unanticipated. (For
discussions of the tension between operational risk manage-
ment practice, and incident preparedness and management,
see, e.g., Jalba et al., in press; Pollard et al., 2009).

The appropriateness of any HRA methodology may depend on
the context that is being assessed. As is the case with all risk meth-
odologies, the characteristics of the risk and the availability of data
to support the application of specific tools and techniques has a
forceful influence on their feasible use. Are we considering a repet-
itive task that an operator performs in the normal course of
events? In this case we need modelling approaches that fit with
behaviours in the known domain. Or are we looking at the re-
sponse of an operator to something unexpected that may herald
an unanticipated departure of the system from its normal operat-
ing characteristics? In this case we need modelling behaviours
for the knowable, complex or even chaotic domain. For repetitive
events the key contextual pressures on operators that may modify
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their behaviour are likely to relate to complacency and organisa-
tional issues such as excessive workloads or requirements to work
at the same task too long. External pressures and distractions such
family problems or a national sporting event are more likely to af-
fect behaviour in repetitive normal operations than in responding
to the unexpected. In responding to events ranging from an indica-
tion of departure from normal operations to a full blown crisis,
adrenaline, the importance of the matter, as well as cognitive inter-
est are likely to focus the mind. So the operators’ performance is
more likely to be affected by issues such as cognitive overload, mis-
communication between several operations and a range of behav-
iours that we commonly call panic! Organisational contexts that
affect the operators’ responses relate to, inter alia, the provision
of training, including emergency simulations in a variety of scenar-
ios, and the establishment of common mental models among re-
sponse teams and, more generally, of supportive team behaviours.

Our contention is that the variety of tasks that HRA is called
upon to perform and the range of contexts in which it is applied
are so great that it would be optimistic in the extreme to expect
one methodology to be sufficient to meet these requirements. Hol-
lnagel (1998) recognised this, though his suggestion of two meth-
ods probably does not take us much further forward, particularly
as his basic method is more of a screening method for his extended
approach rather than appropriate to a different set of circum-
stances. What we believe is needed is a portfolio of HRA methods.
The characteristics of each need to be well understood so that we
can determine the appropriate contexts for its application and
appreciate its accuracy. It is also important to work out a way of
integrating them so that we do not perpetuate the fallacy of think-
ing tasks can be divided up and broken down, and methods can be
selected in isolation.

6. Toward an extended model of HRA

Summative HRA and related approaches emphasise quantifica-
tion and prediction. While cognitive understanding of people and
cultural perspectives on organisations are acknowledged, the gulf
between these and quantitative risk models is generally considered
too significant to be bridged. Yet the conjoining of these ap-
proaches could yield a superior model of safety critical organisa-
tions and the people working within them. In the short term,
exploring the interfaces between HRA and behavioural, organisa-
tional and related studies is likely to benefit formative analyses
to support the design and operation of complex systems. The bar-
riers to the quantification needed in summative analyses are cur-
rently too substantial – we do not have sufficiently developed
and validated models of behaviour and organisations to provide
the precision needed. Moreover, progress in improving and devel-
oping quantitative HRA methods is likely to proceed most quickly
in relation to tasks and activities falling in the known and, perhaps,
knowable Cynefin spaces. Successful quantitative modelling of
such tasks and activities depends on having sufficient data to de-
velop and validate models. For systems that are long established
or straightforward developments thereof, we are likely to have
useful data. For novel systems we might generate such data by
involving operators in simulations of component tasks and activi-
ties in known and knowable spaces. Ĉepin (2008) has suggested
as much, though without the language of Cynefin. Ĉepin’s model-
ling, as might be expected from our discussion, is focused on prob-
abilistic assessments of errors of omission and commission. His
proposed development focuses on manufactured situations with
tight parameters. While additional data gathered within such a
paradigm would add considerable utility to HRA models, there re-
mains the issue of scope. The approach cannot be easily extended
to tasks and activities in the other spaces. By definition, in the com-
plex space we have neither sufficient qualitative understanding
nor relevant data to develop quantitative HRA models that predict
individual, group and organisational human behaviour and how
these may impact overall system reliability and safety.

Thus we believe that the dominant HRA paradigm, suited as it is
for the known and knowable spaces, needs to be complemented by
paradigms developed specifically for the complex space. In achiev-
ing this, we will need to move away from many systems engineer-
ing approaches in which hazards are purportedly designed out of a
system. Complex systems involve some human activity if only in
their design and hence are susceptible to some risk arising from
human behaviour. Such systems engineering approaches may
work in the known or knowable spaces – and there the question
is moot. Even the simplest systems in the known space need to
be designed and that is a human activity. Moreover the risk
homeostasis model suggests that there can be an over-reliance
the safety promised by the system and a concomitant increase in
overall risk. But in the complex space, we have no such hopes that
current approaches can design hazards out of the system.

It will not be easy to develop models for new HRA paradigms
suitable for the complex space. For instance, organisational behav-
ioural studies can be useful in identifying the individual, cultural
and organisational factors relevant to system safety; but they do
not lend themselves to simple quantification; indeed, it is the very
nature of the complex space that quantification is difficult if not
impossible on current knowledge. We are also limited both by
the availability of data from real incidents and from the generalis-
ability of laboratory based studies. Some commentators, notably Le
Coze (2005), consider the question of whether current forms of
organisations can lend themselves to effective modelling. Further-
more, linear models of cause and effect cannot be simply applied
(Morin, 1977). Le Coze provides a useful analysis of organisational
theories, and their limitations. He proposes that approaches from
complexity theory5 (Morin, 1999; Prigogine, 1994; Simon, 1996)
could assist in integrating methodologies. One of the contributions
of complexity theory is the guiding philosophy that complex prob-
lems cannot be meaningfully decomposed and retain utility since
the whole is greater than the sum of its parts. Le Coze concludes
by emphasizing the need for holistic approaches to organisations
with additional data from both organisational events and empirical
studies.

Another family of approaches that might lead to a broadened
conceptualisation of HRA in the complex space are the socio-tech-
nical (Mumford, 2000). For instance, Reiman and Oedewald (2007)
propose that safe and effective organisations can arise only when
there is integration of organisational culture and organisational
activities. Their model includes a range of qualitative and quantita-
tive methods designed to elicit descriptions of the cultural features
and the organisational core tasks resulting in a thorough under-
standing of alternative ways to approach organisational thinking,
strengths and weaknesses of practices and opportunities to create
dialogue regarding the effectiveness of work. Reiman and Oede-
wald’s paper represents a useful contribution to the development
of the field of socio-technical systems and their potential links with
more quantitative approaches to error and risk. What they do not
encompass are individual approaches to understanding organisa-
tional behaviour. Their work represents another step in the right
direction but there is a long way to go before human activities
and behaviours in complex space can be modelled sufficiently for
quantitative HRA.

None of the above addresses activities and behaviours which
might arise if through some unanticipated event the system
‘moves into’ the chaotic space: e.g. the unanticipated formation
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of a hydrogen bubble in the Three Mile Island Incident (Commis-
sion on the Three Mile Island Accident, 1979; Niculae, 2005). By
definition these characteristics cannot be represented in a model
– certainly not in anything other than a schematic manner – sim-
ply because the chaotic space represents that part of our environ-
ment that we do not understand yet and so cannot predict.

So to take stock: current quantitative HRA methodologies seem
applicable to behaviours and activities in the known and knowable
spaces. There are the barest hints of how some quantitative models
might be developed to predict the impacts of human activities and
behaviours in the complex spaces; and, by definition, it is logically
inconceivable that we can develop quantitative models for the cha-
otic space. Thus it is not currently possible to perform summative
risk and reliability analyses for any system in which human behav-
iour and activity can enter the complex or chaotic spaces. Govern-
ments and regulators should be concerned because this accounts
for the majority of the technological systems currently being oper-
ated and commissioned. This does not mean that they are unreli-
able or unsafe; only that we cannot assure their reliability or
safety to within some negligibly small probability. But there are
ways forward.

Firstly and most immediately, we can look to formative uses of
HRA, the behavioural and organisational sciences and many other
related disciplines to inform the design of organisational and man-
agement structures and the establishment of appropriate safety
cultures to improve the systems that we have and are designing.
This will not be easy because the imperatives that drive this ap-
proach fly in the face of the dominant reductionist thinking in risk
and reliability communities. One cannot simply decompose sys-
tems into smaller subsystems, focus on these in turn and expect
these to represent the total system, because culture, organisational
structures and other drivers of human behaviour correlate actions,
judgements and decision making in the different subsystems. Mod-
ern perspectives on risk demand a systemic rather than an ato-
mised perspective of the technical, human and organisational
features of systems. Further, because many systems have shared,
and arguably, often fragmented responsibilities for management
and risk management (e.g. flood defence, social care, biosecurity
in the food chain), one needs to take a more holistic perspective.
The conceptualisation offered by Cynefin may again give us a
way forward. The simple visual categorisation of different decision
contexts has proven very successful in one of the author’s experi-
ences in helping in problem formulation and issue structuring
(Franco et al., 2006, 2007; Mingers and Rosenhead, 2004;
Rosenhead and Mingers, 2001). The managers who decide on the
choice of managerial system, its components and operational pro-
cesses could map these onto a Cynefin diagram. The discussions
and deliberations that would occur as they undertook this would
naturally surface many issues that their design and management
decisions would need to address. In other words, we propose a
careful use and reflection upon a Cynefin mapping would augment
current hazard identification procedures and make clearer some of
the issues relating to human behaviour that management will face
in operating the system. When they identify that issue although
important lies in the known or knowable space they can look to
current HRA – or, preferably, somewhat enhanced – models to
guide their thinking and planning. But when discussion identifies
an issue as lying in the complex space then they will to rely much
more on judgement and put into place management processes that
can deal with behaviours more subtly than seeking to police
against ‘slips, errors, and omissions’.

We also believe that in time it will be possible to develop better
quantitative HRA methodologies to give wider assurance at the
summative level. But it is unlikely that this will lead to single
methodology. Rather we will need a multi-faceted approach that
combines empirically validated HRA models for the known and
knowable spaces with more judgementally based methods for
the complex space. The Cynefin model suggests a broad framework
with which to categorise the human tasks and activities in system
to determine which form of HRA modelling would be most appro-
priate; but it is only a broad framework. To develop this methodol-
ogy it will probably need extending to recognise, among other
things:

� whether the human behaviours and activities take place at the
individual, group, organisational level;
� the wider organisational context – including strategic and eco-

nomic imperatives – in which the teams and local management
structures are embedded;
� the team and local management structures which set the local

context in which the operators work;
� the cultural context and – including misplaced trust in other

safety barriers in the system – in which the operators find
themselves;
� external influences, particularly those arising from larger exter-

nal and societal pressures;
� the historical context, including perhaps the lack of recent inci-

dents leading to a growth of complacency.

In Adhikari et al.(2008) we outline a programme of research and
benchmarking that may help us develop such a multi-faceted port-
folio of HRA methodologies that may eventually provide much bet-
ter summative guidance on the risks inherent in complex systems.

None of this will be easy and it will only be possible if we can
break the current mechanistic paradigms that permeate the risk
and reliability communities. We need to move on from the Swiss
Cheese model.
7. Conclusion: a message for managers

The key point that we have been trying to convey in this paper
is the current dislocation between the mechanistic reductionist
assumptions on which current HRA methodologies are primarily
built and our current understandings of human and organisational
behaviour. We must bring these into better register. Managers,
regulators, politicians and the public need to beware of this lest
they believe the numbers that are sometimes touted about the
safety of our systems. This should not be read as a manifesto for
Luddism. We are not against the development of more and more
complex systems, providing that they bring benefits, of course.
Nor are we against risk per se. Rather we are concerned at the prev-
alence of overconfidence in our ability to assess the risks that arise
from human behaviour. We need to take the numbers with that
‘pinch of salt’, recognising that when we build complex systems
our uncertainty is greater than the raw numbers suggest and we
need to monitor and watch for the unanticipated. As is often the
case with the application of risk and reliability tools, the valuable
insight comes from a systemic and often qualitative understanding
of which systems features ‘drive’ the risk, rather than from the risk
estimates per se.

We in the research community have much to do. But so does the
management community. It is too easy to trust the assurances of
current risk and reliability analyses which promise that the chance
of an untoward event is small, to believe in the cumulative effect of
‘independent’ safety barriers and to manage the subsystems sepa-
rately unaware of the interconnections between them that organ-
isational culture and human behaviour bring. Human reliability
has too long been treated as something that relates to individuals.
It needs to be seen and managed at the organisational level. The
key question is not how likely is an individual’s behaviour is to im-
pact a system, but how well the organisational structures around
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and within that system enable the system to run safely and reli-
ability, and how well they will recover if an untoward event threat-
ens or happens.
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Abstract. Good assessment of environmental issues, such as climate change, requires effective com-
munication of the degree of uncertainty associated with numerous possible outcomes. One strategy
that accomplishes this, while responding to people’s difficulty understanding numeric probability
estimates, is the use of specific language to describe probability ranges. This is the strategy adopted
by the Intergovernmental Panel on Climate Change in their Third Assessment Report. There is a
problem with this strategy, however, in that it uses words differently from the way lay readers of
the assessment typically do. An experiment conducted with undergraduate science students confirms
this. The IPCC strategy could result in miscommunication, leading readers to under-estimate the
probability of high-magnitude possible outcomes.

1. Introduction

The potential impacts of climate change vary not only according to their timing and
magnitude, but also according to the probability with which they will occur. Some
of the most consequential potential impacts – such as rapid sea level rise due to the
disintegration of the West Antarctic Ice Sheet – thankfully will probably not occur.
Effective assessment of climate change allows policy-makers to take into account
scientific knowledge about not only the most likely outcomes of environmental
change, but also these less likely, but more consequential possibilities. A significant
challenge confronting the Intergovernmental Panel on Climate Change (IPCC) and
other assessment panels is to communicate the broad range of beliefs, and the un-
certainties associated with those beliefs, about the future course of global climate,
so that policy-makers can make responsible decisions about societal actions.

The task of communicating uncertainty is made difficult both by the disagree-
ments within the scientific community about what the probabilities are, and by
lay people’s general difficulty thinking in probabilistic terms. Assessment authors
must first resolve among themselves the uncertainty over uncertainty: what the
probability of an event’s occurring actually is when there is disagreement over that
probability. Then, they must figure out how to communicate that uncertainty to a

Climatic Change 61: 17–30, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.



18 ANTHONY G. PATT AND DANIEL P. SCHRAG

lay audience – policy makers and the public – so that the assessment audience will
be able to make effective tradeoffs with society’s scarce resources.

The latest report from the IPCC, Climate Change 2001, systematically com-
municates probability using well-defined descriptive language, words such as very
unlikely (Houghton et al., 2002). Doing so avoids having to arrive at a single point
estimate for the probability of an event, or even a precise range of estimates. It
also responds to the public’s difficulty interpreting quantified probabilities. The
IPCC strategy achieves several important objectives, such as promoting internal
consensus among chapter authors and conveying a sense of confidence in outcomes
of climate. At the same time, the IPCC’s strategy does not exactly match people’s
common use of language, in which the words used to describe the probability of an
event also depend on the event’s potential magnitude; the IPCC is communicating
probability using language commonly used to describe risk, the combination of
probability and consequence.

In this paper we examine the potential biases that could result from the possible
mismatch between the IPCC’s use of words describing probability and people’s
intuitive understanding of their meaning. After background sections on people’s
cognitive biases interpreting probability, and the ways that assessments have com-
monly addressed these biases, we present the results of a simple experiment testing
the use and interpretation of descriptive words to describe potential weather events.
What we find is a reassuring symmetry in how people use language to describe
possible events. Risk communicators exaggerate the likelihood of high conse-
quence events, at the same time that their audience expects such exaggeration,
and de-codes accordingly. The IPCC strategy, however, removes the possibility
of exaggeration on the part of the communicators, since each descriptive word is
assigned a specific probability range that is insensitive to event magnitude. Unless
the audience adjusts – ceasing the practice of correcting for expected exaggeration
– the result could be a biased under-response to high magnitude events.

2. Probability Interpretation

Both psychologists and behavioral economists have shown that people’s descrip-
tions and understanding of probabilities depend on contextual factors such as
objective probability, base-rate, and event magnitude (Weber, 1994). In terms of
objective probability, Kahneman and Tversky (1979) identify a weighting function
people use to interpret evidence of probabilities, shown in Figure 1. People tend to
overestimate the probability of relatively infrequent events (such as dying from
botulism) and underestimate the probability of relatively frequent events (such
as dying from heart disease). The change in people’s reactions when an event’s
assessed probability goes from 0% to 1% is much greater than when it goes from
36% to 37% (Patt and Zeckhauser, 2002). For very small probabilities, people’s
responses are more binary than continuous (Kammen et al., 1997; Covello, 1990).
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Figure 1. Probability weighting.

Below a certain threshold of concern people view the event as impossible; above
the threshold, they take measures to prevent it, measures that may not be justified
by the event’s small probability. People are relatively insensitive to changes in
assessed probability in the middle of the scale, treating all such probabilities as
roughly fifty-fifty.

In terms of base rates, Wallsten et al. (1986) observe that people’s interpretation
of probability descriptors depends on the background frequency of an event. Hence,
people interpret a ‘slight chance’ of rain in London as meaning a higher numeric
probability than a ‘slight chance’ of rain in Madrid. Windschitl and Weber (1999)
observe a similar phenomenon even when people are given numeric estimates of
event probabilities. In one experiment, subjects are told that a person has a 30%
chance of contracting a mild form of malaria during a trip to a tropical destination.
Some of the subjects are led to believe that the destination is Calcutta, while others
are told Honolulu. Subjects then describe, on a verbal scale, the likelihood of
malaria. Those people who are told that the trip is to Calcutta tend to describe
the likelihood of malaria with more certain language (choosing terms such as
‘somewhat unlikely’) than do the people who are told the trip is to Honolulu
(choosing terms such as ‘quite unlikely’). Later, the same subjects are asked to
recall the numeric probability of contracting malaria. Those for whom Calcutta
was the destination remember higher numeric probabilities.

In terms of event magnitude, Weber and Hilton (1990) observe people’s proba-
bility word interpretation responding not only to base rates, but also to the negative
utility associated with different events. In one experiment, subjects were asked
to decide on the numeric probability they believe their doctor had in mind when
describing the likelihood of medical conditions such as warts, stomach ulcers,
and skin cancer. For each medical condition the doctor used the same probability
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words, such as ‘slight chance’. People’s initial estimates of numeric probability are
initially lower for the more serious events, such as cancer. The researchers attribute
this to the base-rate phenomenon: base rates and severity are usually inversely cor-
related, and people generally assume higher magnitude negative outcomes are less
likely. Later in the experiment, however, people were informed that the base rates
were the same for the different conditions. With this new information, people show
a non-linear response to event severity. As the severity of events increased, people
first showed higher numeric estimates of probability. However, as the events started
to become life threatening, subjects’ estimates of probability begin to decrease.
Hence for serious events, such as cancer, subjects again ‘de-coded’ the physician’s
language to assign a lower numeric probability than for the events of intermediate
magnitude.

The sensitivities to changes in assessed probability, base rates, and event mag-
nitude all create challenges for assessors. For example, risk communicators may
have to work very hard to convince people that it is more worthwhile reducing one
risk from 45% to 30% than another risk from 0.01% to 0.005%. They may have
to convince people that even though a given risk has a 0% base rate – it has never
happened before – it is still possible that it will happen in the future. And they will
need to help people distinguish between event magnitude and probability, so that
they can properly compare different risks to make more accurate decisions.

3. Uncertainty Assessment

Fortunately, scientific assessors have increasingly appeared sensitive to audience
perceptions, revealed in the variety of ways they have communicated uncertainty.
Some assessments fail to report highly uncertain information, or else avoid quan-
tification of uncertainty by giving ranges of expected outcomes without clarifying
the probability bounds for that range. This approach offers information that is easy
to understand, yet at the same time incomplete. Patt (1999) examines the assess-
ment of a highly unlikely yet highly consequential result of climate change – the
rapid collapse of the West Antarctic Ice Sheet – across different types of assess-
ment. He finds that the large, consensus-oriented assessments, such as the IPCC,
were less likely to provide information on the event. Smaller assessments, both
those conducted by advocacy groups and those responding to specific questions
of their intended audience, tended to provide greater detail on the issue. There are
several explanations. First, consensus within the assessment team might be difficult
to achieve for high-consequence low-probability events. For example, Morgan and
Keith (1995) obtained subjective probability judgments from a number of climate
change scientists, using a variety of expert elicitation techniques. What they ob-
served was disagreement, often between disciplines, with many experts’ ranges
failing to overlap. As events become more and more speculative, it is likely that
expert opinion will diverge even more. Patt also concluded that for these extreme
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events, it is possible that assessment authors would be tempted to view any treat-
ment as counterproductive. Because people’s responses to low-probability events
are likely to be binary and polarized, discussion of such events may in fact lead
to greater conflict within the policy community. If assessment authors see their
task as building consensus, not only among themselves but also among decision-
makers, then they will limit their discussion to events that are either certain or of
middle-probability.

Van der Sluijs (1997), likewise, examines how the IPCC has described the range
of future temperature changes associated with climate change. He observes that
the range has remained fairly constant, even as new evidence has become avail-
able. Assessors were reluctant to depart from a previously stated position, and
‘anchored’ on the old estimate absent a compelling reason to change it. To main-
tain intellectual honesty, they failed to quantify the probabilities associated with
that temperature range. As long as it remained unclear what a given temperature
range actually meant, they could continue to use it. Like the strategy of omitting
treatment of extreme events altogether, the anchoring phenomenon is a way of
avoiding the rigorous treatment of uncertainty, when being rigorous could make
consensus difficult, or could confuse the audience.

Other assessments – assessments of health and technological risks in particular
– present quantified probability estimates. This approach offers more information
but may be difficult to interpret by an untrained audience. The history of these
difficulties is well documented. Leiss (1996), for example, describes three stages in
risk communication practice. In the first stage, risk communicators believed that if
they simply communicated their best estimates, people would use that information
to make consistent tradeoffs. This strategy lasted until the 1980s, by which point
it became clear that people were systematically over-reacting to some kinds of
risk, and under-reacting to others. In response, risk communicators saw their jobs
evolving to include more salesmanship – they would convince people of which
risks were worthwhile, and which risks were not – in which the communicator was
deliberately trying to bring about a specific behavior pattern that might not have
occurred otherwise. Alternatively, many risk assessors and communicators started
to suggest that decision-making on such issues be insulated from popular opinion
(Breyer, 1993). In many cases, however, such strategies led to increased public re-
sentment of the risk assessors and decision-makers (Freudenberg, 1996; Irwin and
Wynne, 1996). The third stage, as Leiss and others (e.g., Fischhoff, 1996) see it, is
characterized by a greater attention to public participation, to building partnership
between risk assessors and decision-makers in developing appropriate responses to
the information. The approach seems to work across issues and cultures to increase
the credibility and salience of the information, and to help people respond wisely
(Patt and Gwata, 2002).

Many of these considerations entered into the design consideration for the IPCC
Third Assessment Report. The challenge was to provide understandable and com-
plete information about uncertainty in a context – the written document – where
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Table I

IPCC qualitative descriptors

Probability range Descriptive term

< 1% Extremely unlikely

1–10% Very unlikely

10–33% Unlikely

33–66% Medium likelihood

66–90% Likely

90–99% Very likely

> 99% Virtually certain

the audience would be unable to participate. Moss and Schneider (2000) reported
to the IPCC lead authors on the communication of uncertainty, recommending a
seven-step approach for describing each uncertainty. They suggested, for example,
that authors should identify and describe the sources of uncertainty, document the
ranges and distribution for each uncertain variable, identify the level of precision
possible for describing the variable, and place the expert judgments within a for-
mal decision-analytic framework. The IPCC authors accepted some of Moss and
Schneider’s recommendations, and not others. Of particular note, however, was the
decision by lead authors to use specific qualitative language – words such as likely,
very likely, and virtually certain, to describe quantitative probability ranges. Early
in the report they define the probability ranges for seven qualitative descriptive
terms, and then use those terms rather than numbers (see Table I). This is a more
simple strategy than the one that Moss and Schneider (2000) suggest.

There may be good reasons for this approach. First, using language such as very
likely or virtually certain to describe an uncertain outcome avoids the problem of
experts having to reach consensus on a particular probability estimate or range.
Since it may well be impossible for experts to reach consensus, the alternative to
the use of such language may well be complete omission of the uncertain outcome.
Obviously, it is better to describe an event than to omit it, even if the probability
range is wide and not completely precise. Second, many people understand, or feel
they understand, the meanings of such words better than they do accurate numbers
or ranges (Wallsten et al., 1986). This is especially true for forecasts of one-time
events (e.g., the chances of one meter sea level rise), as opposed to forecasts of
frequent outcomes (e.g., the chances of any one person contracting malaria during
a visit to Honolulu) (Pinker, 1997). To a lay audience, a numeric probability for the
frequent event makes sense; the typical person stands an X% chance of contracting
malaria, since X people in 100 actually do contract the disease. But for the one
time event, for which there is no past data, the meaning of the X% is somewhat
different. The probability estimate conveys a degree of confidence in the outcome
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occurring, rather than a description of past data. The use of probability language to
describe degrees of confidence, rather than numeric estimates, makes more sense
to most people (Moss and Schneider, 2000). Additional information, the accurate
numerical data, may simply upset this simple approach toward communicating
uncertainty.

An important component of this approach, in addition to the use of words rather
than numbers, is the adoption of a context-independent scale. Thus, the language
the IPCC authors use to describe uncertainty depends only on the probability of
the outcome, or the confidence with which they believe it will occur, and not on
other characteristics of the event, such as its magnitude. However, the language
that people use to discuss uncertainty and the meanings they give to various de-
scriptors depend on the event being described and the context within which it
falls: the total risk of an event. When both the communicators and the audience are
using uncertainty descriptors to describe risk, and not simply probability, accurate
understanding will pass from communicator to audience without bias (Brun and
Teigen, 1988). But when the communicators use words to describe probabilities,
and the audience still interprets them as describing risk, miscommunication can re-
sult. The result of that miscommunication could be for the audience systematically
to underweight both the probability and the riskiness of high magnitude events.

4. Experiment

To illustrate how the use of context independent descriptors could be important,
we conducted a simple experiment, in which we polled 152 undergraduate sci-
ence students at Boston University, randomly distributing equal numbers of four
different survey questions. The surveys differed across two dimensions, allowing
for a controlled experiment. Half of the surveys asked subjects to translate, in the
role of risk communicators, numeric probabilities into words – choosing one of the
IPCC’s seven descriptive terms, from virtually certain to extremely unlikely – to
describe an event of 10% probability. The other half of the surveys asked subjects
to assign a probability range – again one the IPCC’s seven ranges, from greater
than 99% chance to less than 1% chance – to an event described as ‘unlikely,
perhaps very unlikely’. This task is equivalent to that of an IPCC audience, making
an estimate of the likelihood of an event based on the probability description they
hear or read. Within each group, half the surveys asked subjects to describe or
interpret the likelihood of a high-impact outcome: a hurricane due to hit land near
Boston. The other half involved a low-impact outcome, early season snow flurries.
Table II shows the four survey versions.

Subjects were aware that we had distributed several versions of the survey, but
were not aware of how the versions differed, or the purpose of the experiment. They
were also not generally aware of the IPCC’s choice of language to describe uncer-
tainty in Working Group I of the Third Assessment Report. Clearly, undergraduate
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Table II

Survey versions

Communicators Audience

High magnitude Low magnitude High magnitude Low magnitude

outcome outcome outcome outcome

Imagine that you are the weather person for a Imagine that the date is September 8, 2001, and

Boston television station. The date is you are watching the weather report on

September 8, 2001. television.

You are somewhat You are somewhat The weather person is The weather person is

concerned about a concerned about a cold talking about a very talking about a cold

very powerful front currently over powerful hurricane front currently over

hurricane currently western New York currently near western New York

near Bermuda. State. Usually at this Bermuda. Usually State. Usually at this

Usually these time of the year these these hurricanes hit time of the year these

hurricanes hit land in fronts bring isolated land in the Carolinas, fronts bring isolated

the Carolinas, or else thunderstorms and or else track out to thunderstorms and

track out to sea, but in chilly temperatures sea, but in this case chilly temperatures

this case conditions (40s to 50s) to the conditions make it (40s to 50s) to the

make it possible that region, but in this case possible that the region, but in this case

the hurricane could hit conditions make it hurricane could hit conditions make it

land near Boston, possible that Boston land near Boston, possible that Boston

devastating the region will see some snow devastating the region will see some snow

with sustained winds flurries and with sustained winds flurries and

of over 100 mph and temperatures dipping of over 100 mph and temperatures dipping

extensive flooding into the high 30s. extensive flooding. into the high 30s.

The National Weather Service is currently The weather person, whom you trust, is

predicting the chances of this happening at saying that it is unlikely, perhaps very

10%, and you believe this to be a good unlikely, that this will actually happen.

estimate. Which of the following language Based on this forecast, what do you think

would you use to describe to your viewers the the chances of this event happening actually

chances of this happening? are?

a. Extremely unlikely a. < 1%

b. Very unlikely b. 1–10%

c. Unlikely c. 10–33%

d. Medium likelihood d. 33–66%

e. Likely e. 66–90%

f. Very likely f. 90–99%

g. Virtually certain g. > 99%
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Figure 2. Communicators’ probability words.

college students differ in their technical expertise from policy-makers and other
readers of the IPCC report. However, what we are testing is whether there exists
a basic behavioral tendency for people in general to interpret probability language
describing weather events in a way that responds to event magnitude, as others
have observed in the literature. It may well be that highly-trained individuals will
demonstrate less of a bias. But by using college students as subjects, we can draw
conclusions about people’s underlying decision-making biases.

The results show significant (χ2 test, p < 0.01) differences between the two
outcomes across the two groups of subjects. Among communicators, subjects were
more likely to use greater likelihood descriptors to describe the hurricane than to
describe the snow flurries, as seen in Figure 2. While the mode descriptor for both
events was unlikely, more subjects chose the descriptors medium likelihood, likely,
and very likely to describe the hurricane than to describe the snow flurries; likewise,
more subjects choose the descriptors very unlikely and exceptionally unlikely to
describe the snowfall. Among the audience, subjects estimated lower probabilities
of occurrence for the hurricane than for the snow flurries, as seen in Figure 3.
The mode estimate for the hurricane was 1–10% chance, with several subjects
estimating <1% chance. For the snow flurries, the mode estimate was 10–33%
chance, with more subjects estimating 66–90% chance for the snow flurries than
for the hurricane.
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Figure 3. Audience’ probability estimates.

5. Discussion

Clearly, the experimental results – surveying only upon undergraduate science
students – do not distinguish between different groups of assessment audiences.
They are, however, consistent with the existing literature on the use of probabilistic
language, and they do suggest an important feature of these probability descriptors:
that people both use and interpret them as containing information about event mag-
nitude as well. People are more likely to choose more certain sounding probability
descriptors (e.g., likely instead of unlikely) to discuss more serious consequence
events. But people are also sensitive to this practice in others, expecting a certain
amount of exaggeration about the likelihood of high magnitude events. A weather
forecaster might describe a 10% probable snow flurry as very unlikely, which
the television viewer would accurately interpret to mean about 10%. Likewise, a
weather forecaster might describe a 10% probable hurricane as medium likelihood,
which the television viewer would again accurately interpret to mean about 10%.
The symmetry of the two groups allows for effective communication. Figure 4a
illustrates this pattern. Assigning a fixed probability scale to describe uncertain
events with significantly different magnitudes of impact could disrupt that symme-
try, as seen in Figure 4b. What would happen if forecasters were to use a single
phrase, such as unlikely, to describe both the hurricane and snowfall? Attempting
to correct for the assumed exaggeration, the viewers would understand the single
word unlikely as implying a smaller chance for the hurricane than for the snow
flurries.
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Figure 4. (a) Exaggeration and decoding. (b) Fixed scale and decoding.

5.1. BIASED MITIGATION EFFORTS

In response to the fixed probability scale, people will have a tendency to over-
estimate the likelihood of low-magnitude events, and under-estimate the likelihood
of high-magnitude events. Importantly, the two errors do not balance each other
out, but introduce a bias in people’s aggregate responses to the two events. Imag-
ine, for example, that the hurricane, if it hits Boston, will cause damages of $10
million. The probability of this outcome is 10%, yielding an expected loss of $1
million, but people underestimate this probability to be 5%, yielding an expected
loss of $0.5 million. The snow-flurries will cause very small damages, perhaps
one additional road accidents costing $10,000. The probability is 10%, yielding an
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expected loss of $1000, but people overestimate the probability to be 15%, yielding
an expected loss of $1500. The underestimate of damages for the high-magnitude
event completely overshadows the overestimate from the low-magnitude event.
People’s expectation of damages from the two combined events will be biased
downward.

The efficiency of people’s efforts to reduce damages, through advance prepa-
ration, will also be biased downward, with a net loss in welfare. To see how this
is so, consider one possible strategy an individual or local area might pursue: the
purchasing of insurance. First, imagine that it is possible to insure against each
event at an actuarially fair rate, i.e., 10% of the possible loss from each event.
Rational risk-averse actors would gain the greatest expected benefit from fully in-
suring against each event, purchasing $1 million of coverage for the hurricane, and
$10,000 of coverage for the snow flurries, reducing to zero the variance of possible
outcomes while leaving the expected outcome unchanged. But if people believed
the probability of the hurricane were 5%, the insurance at a 10% rate would appear
overpriced, and they would underinsure, i.e., purchasing insurance to cover < $1
million. Likewise, estimating the likelihood of snow-flurries at 15%, people would
over-insure. In each case, they would have purchased the wrong amount of insur-
ance, resulting in positive variance, and a lowering of expected utility, for each
event. Second, imagine that it is possible to purchase a single insurance policy for
cover both events. At an actuarially fair rate of 10%, this policy would cost slightly
more than $1 million. With the two errors in probability understanding, people
would estimate losses at slightly more than $0.5 million. The policy would appear
too expensive, and people would purchase less than full coverage.

5.2. THE IPCC STRATEGY

Climate change will bring many predictable impacts such as a rise in mean annual
temperature, changing precipitation patterns, or mild coastal flooding. It also may
bring less probable, more extreme impacts such as major coastal flooding (if polar
ice were to deteriorate quickly), prolonged regional droughts, or large increases
in storm frequency or intensity. Ideally, policies to mitigate and adapt to climate
change will rely on an unbiased appraisal of both the probability and magnitude
of each of these different possible outcomes. The communication strategy that
the IPCC Third Assessment Report adopts – referring to probabilities through
descriptive language matched to precise probability ranges – at first seems to be
the best possible approach. Not only does it allow the IPCC more easily to achieve
consensus within their own ranks about how to describe levels of confidence, but it
also provides a lay audience with information that they can more easily digest.

At closer inspection, however, the strategy could be introducing an unintended
bias into the policy process, namely one of under-responding to the aggregate risks
associated with climate change. A careful reading of the report, in which the reader
takes pains to note the precise probability ranges for each potential outcome, would
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avoid such a bias. Many readers, however, may lack the time to read the report so
carefully. Bias could enter in when readers make intuitive judgements about the
likelihood of events, based on less attentive reading in which they fail continuously
to match words with probability ranges.

Assessors can take steps to address this bias. If policy-makers read the report
with attention to detail, they will both notice and adopt the IPCC’s precise, poten-
tially counterintuitive, meaning of probabilistic language. Scientists and assessors
hence need to encourage the practice of careful reading, in particular highlighting
the meaning of the probabilistic language, and not counting on the audience to
do so on their own. But there are also steps that scientists can take to make sure
that this happens. Most importantly, scientists should be aware that the potential
for bias exists when an audience makes intuitive judgement. When communicat-
ing with policy makers or the lay public, scientists should encourage attention
to detail. Whenever possible, scientists should refer to uncertainty with greater
specificity than the report provides. Scientists should use not only the descriptive
language of the report, but also matching those words to their respective proba-
bility ranges. As Moss and Schneider (2000) suggest, one approach could be to
incorporate the uncertainty into decision-analytic frameworks, such as that carried
out above for the simplified choice about purchasing insurance. Putting the num-
bers to use in this way encourages quantitative rigor, and through this rigor the
audience can better understand the relative importance of the different potential
outcomes of climate change. From a normative standpoint, the risks associated
with low-probability high-magnitude events may be the most important elements
of a rational decision-making framework addressing climate change. However,
unless scientists encourage quantitative rigor on the part of policy-makers, it is
likely the policy-makers will not give enough attention to these risks, and will take
inadequate steps either to avoid or to prepare for these risks.

6. Conclusion

The strategy of using specifically defined language to describe the probabilities of
climate change risks achieves important objectives, but may also introduce bias into
policy-makers responses. Intuitively, people use such language to describe both the
probability and magnitude of risks, and they expect communicators to do the same.
Assessors need to emphasize that the IPPC’s use of this language departs from
people’s expectations. Unless policy-makers appreciate this fact, their response to
the assessment is likely to be biased downward, leading to insufficient efforts to
mitigate and adapt to climate change.
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Abstract Communication of uncertainty information in Intergovernmental Panel
on Climate Change (IPCC) assessments has evolved through successive reports to
provide increasingly formal classifications for subjective and objective information.
The first IPCC assessments provided uncertainty information in largely subjective
form via linguistic categorizations depicting different levels of confidence. Recent
assessments have codified linguistic terms to avoid ambiguity and introduced prob-
abilistic ranges to express likelihoods of events occurring. The adoption of formal
schemes to express likelihood and confidence provides more powerful means for
analysts to express uncertainty. However, the combination of these two metrics to
assess information may engender confusion when low confidence levels are matched
with very high/low likelihoods that have implicit high confidence. Part of the difficulty
is that the degree to which different quantities in the assessments are known varies
tremendously. One solution is to provide likelihood information in a scheme with a
range of different precision levels that can be matched to the level of understanding.
A version of this scheme is also part of the IPCC uncertainty guidance and is
described here.

1 Introduction

Every assessment of climate change is faced with the need to characterize and
communicate uncertainties in the state of understanding. This has long been a
contentious process. For example, the ‘Charney’ report (National Research Council
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1979) characterized climate sensitivity as 3◦C ± 1.5◦C, sparking a long running
discussion of the meaning of the error range. As climate assessments moved into the
Intergovernmental Panel on Climate Change (IPCC) process and attracted larger
audiences, pressure has mounted to formalize the characterization of uncertainties.
The IPCC has provided a forum to develop standard, useful formats for commu-
nicating uncertainty. The first IPCC reports highlighted subjective judgements by
categorizing results according to various linguistic expressions of confidence: “we are
certain of . . . ”, “we calculate with confidence that . . . ”, “our judgement is that”. Yet,
considerable ambiguity remained in the interpretation of these terms and in the lack
of any formal method to present quantitative information and likelihoods.

Formal consideration of uncertainty in assessments of the IPCC began with the
Third Assessment Report (TAR) (Houghton et al. 2001). As a part of the TAR
process, Moss and Schneider (2000) wrote a guidance document that developed
a framework for representing and communicating uncertainty in quantitative and
qualitative terms. A critical aspect of the Moss and Schneider proposal was a scheme
to link qualitative descriptors of uncertainty to quantitative metrics. They proposed
a subjective five-unit scale that mapped quantitative ranges of subjective confidence
to linguistic descriptors of confidence. They also recognized that in some cases, scien-
tists might want to either supplement or supplant subjective quantitative judgements
with descriptions of uncertainty that are qualitative in nature. Accordingly, they also
developed the qualitative schema shown in Table 1, which differentiated between
the quality of evidence and the level of expert consensus on a particular topic. The
Moss and Schneider scale is Bayesian in that it does not make explicit the distinction
between subjective and frequentist forms of uncertainty.

This distinction has emerged in representation of uncertainty in the IPCC fourth
assessment (AR4) process. Guidance documents on uncertainty communication
produced for the AR4 (IPCC 2006) distinguish between likelihood and level of
confidence1 in representations of uncertainty. In these documents ‘likelihood’ has a
frequentist connotation and refers to a probabilistic assessment of some well-defined
outcome having occurred or expected to occur in the future (see Table 2). Subjective
expression of uncertainty is introduced in the AR4 via a ‘level of confidence’
scale. The ‘level of confidence’ is based on the degree of understanding in the
expert community using a probabilistic formulation (see Table 3). In traditional use,
likelihoods are based on existing data (from observations or models), and can be
applied to all cases where the classical definition of probability based on past counts
applies. Levels of confidence can be applied when such data are incomplete and
subjective judgement is required.

Separating the likelihood of, and the level of confidence in, a statement has also
raised the possibility that likelihood and level of confidence could be combined
in making assessments. Indeed, guidance documents for the AR4 assessment of
uncertainty state that “it is possible to have high confidence in a finding indicating
that climate change would lead to a low probability of some outcome and conversely
to have low confidence in a finding that climate change would lead to a high
probability of another outcome” (Manning and Petit 2004). While it is possible
to combine likelihood and confidence estimates in this way, it is not necessarily

1The term ‘level of confidence’ is distinct from that of a ‘confidence interval’ as normally used in
statistics.
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Table 1 This table is reproduced from Moss and Schneider (2000) and provides a qualitative means
to express levels of confidence based on the level of expert agreement and the relevant evidence

Amount of evidence →

Level of agreement ↑ Established but incomplete Well established
Speculative Competing explanations

The two-by-two matrix allows ‘low’ or ‘high’ determinations of consensus and evidence to determine
the appropriate confidence expression.

meaningful in all cases. In the following section we explore a variety of possible ways
to combine likelihoods and level of confidence. The combinations we consider are
using only likelihood, using only confidence levels, and using the two together.

The focus on uncertainty in this paper is on characterizing uncertainty in ‘out-
comes’. By this we mean outcomes of some event or well-posed question that are
subject to quantification or can be expressed in probabilistic form. What is important
in this case is that the event and variable be well specified. We are not concerned here
about characterizing the event according to uncertainty typologies, only in expressing
the outcome. Similarly, we are not concerned here with the assessment of uncertainty
in more general knowledge claims which do not have quantifiable metrics. We assess
each of the likelihood and confidence schemes below only in terms of their utility for
expressing quantifiable outcomes.

2 Likelihood versus levels of confidence: three alternatives

On the face of it, the distinction between likelihood and level of confidence sounds
unproblematic and almost innocuous. We argue however, that care must be taken
in applying these differing definitions if the goal of effective communication is to
be achieved, especially when they are used in combination. In what follows, we
examine pros and cons of using likelihood and levels of confidence individually
and in combination by defining three alternative options for using likelihood and
levels of confidence in communication of uncertainty. We then go on to suggest one
alternative for how the two approaches can be fruitfully used in combination.

2.1 Alternative 1: use only likelihood

Alternative 1 would simply use likelihoods and can be interpreted in two ways. The
first is the frequentist/classical view and ignores or downplays subjective uncertainty.

Table 2 Likelihood defined as
a probabilistic assessment of
some well-defined outcome
having occurred or occurring
in the future

Table based on IPCC (2006).

Terminology Likelihood of occurrence (%)

Virtually certain > 99
Very likely > 90
Likely > 66
About as likely as not 33 to 66
Unlikely < 33
Very unlikely < 10
Exceptionally unlikely <1
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Table 3 Characterizations of
levels of confidence expressed
in terms of the odds of being
correct

Table based on IPCC (2006).

Terminology ‘Odds’ of being correct

Very high confidence At least 9 out of 10 chance
High confidence About 8 out of 10 chance
Medium confidence About 5 out of 10 chance
Low confidence About 2 out of 10 chance
Very low confidence Less than 1 out of 10 chance

On the plus side, this is clear and works well for traditional science problems (Ravetz
1971), especially those based on empirical observations. It also provides scientists
with a greater degree of comfort by making a ‘clean’ separation between objective
and subjective knowledge [assuming this were possible (Schrader-Frechette 1984)].
Any information that does not confirm to the norms of classical statistics is discarded
in this approach. Unfortunately, this alternative does not always work well for
climate change because only a limited set of quantities can be expressed in full
likelihood terms. This is effectively the pre-IPCC approach where uncertainty was
discussed in as much as rigorously quantifiable measures were available (and avoided
if not). Using only classical likelihoods delimits the boundaries of knowledge to a
small set of findings based either on the historical record or from models rigorously
calibrated to historical data. This makes it difficult to provide meaningful scientific
advice to policy makers on a large number of questions where history is unlikely to
be a suitable guide for the future.

The second view of likelihood assessments acknowledges that any likelihood
assessment would contain subjective elements. With this broader view, one need
not limit the domain of applicability of likelihood to problems rich in past count
data. However, the more subjective the likelihood assessment, the more the need to
evaluate that subjectivity, and the more the assessment would be improved by adding
information on confidence levels as well. One way to reduce subjective and uncertain
elements of a likelihood assessment is to render these elements conditional—declare
assumptions and hold them fixed. For example, one may express likelihoods of
change conditional on a particular emissions scenario. This can increase the utility of
likelihood statements, though one is still left with a need to assess and communicate
the quality of the conditionals. This last step is not very amenable to a likelihood-only
scheme.

In summary, if we view likelihoods in strict frequentist terms, they have limited
application in addressing climate change issues. If on the other hand we imbue
likelihoods with subjective content (or express them conditionally), then they have
wider application in climatology, but that subjectivity (conditionality) needs to be
evaluated. However, the likelihood scheme itself is inappropriate for subjective
evaluations and needs to be supplemented with a qualitative framework.

2.2 Alternative 2: use only levels of confidence

As noted above, it is rare to have rigorous likelihood data for all but a few variables.
The likelihood of future events can be formally determined from models, but models
have many subjective elements (van der Sluijs et al. 1998; Shackley et al. 1999;
Murphy et al. 2004). Thus, it could be argued that a majority of data relevant to
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assessment of future climate change has embedded subjective elements. The quality
of the data, and suitability of models for the questions posed determines the level of
confidence (Risbey 2002). The early IPCC reports (Houghton et al. 1990, 1996) took
a level of confidence approach without quantification. Instead they used linguistic
approaches, employing terms such as “we calculate with confidence that . . . ”, without
providing quantitative measures. The problems of linguistic assessment without
quantification are well known (Wallsten et al. 1993). The TAR uncertainty guidance
document (Moss and Schneider 2000) changed this by encouraging scientists to
assign a quantitative scale to linguistic claims. The Moss and Schneider scheme was
partially adopted in the TAR, and provided a forceful starting point for effective
communication of uncertainty.

There are however reasons for the IPCC to extend uncertainty communication
beyond the level of confidence scale. Reasonable argument can be made objecting
to the use of a purely subjective scale. For one, uncertainty surrounding a few key
variables in the historical record (e.g. global mean temperature change) can be
assessed in a largely objective manner. In such cases, it probably makes practical
sense to preserve the distinction between objective and subjective assessment.
Second, some members of the scientific community might, for a variety of reasons,
not be comfortable using an exclusively Bayesian approach (Giles 2002). Since the
IPCC is ostensibly a consensual scientific organization it takes intellectual pluralism
seriously, and accommodates differing but valid perspectives on uncertainty. Hence,
using levels of confidence along with likelihood provides a useful way of combining
different levels of knowledge, while satisfying the needs of a consensus process. We
turn next to the question of how likelihood and confidence can best be used in
combination.

2.3 Alternative 3: use levels of confidence and likelihood

In this section we discuss two schemes for combining measures of both likelihood and
confidence. The first scheme uses both measures together to condition likelihoods by
level of confidence. The second scheme adjusts the metric used to express likelihood
according to the level of confidence.

2.3.1 Alternative 3a: simultaneous use of likelihood and levels of confidence

The simplest possible approach is to simultaneously combine likelihood and levels
of confidence in communicating uncertainty. For instance, the AR4 uncertainty
guidance document allows provision for likelihood to be used to communicate
the probability/variability in a particular outcome (Table 2), and for the level of
confidence to communicate the level of agreement associated with that likelihood
(Table 3). The logic of this approach appears to be reasonable—provide likelihoods
based on available data, but also communicate a subjective uncertainty about the
likelihood. Upon closer inspection it becomes clear that simultaneous use of like-
lihood and level of confidence can cause confusion and make the already difficult
challenge of communicating uncertainty even more difficult. Below we provide a
description of why this may be the case.

All likelihood outcomes (of high, medium or low likelihood) with a low subjective
confidence cannot be interpreted in a quantitative manner. Part of the problem with
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the approach is that likelihood and confidence cannot be fully separated. Likelihoods
contain implicit confidence levels. When an event is said to be extremely likely (or
extremely unlikely) it is implicit that we have high confidence. It wouldn’t make any
sense to declare that an event was extremely likely and then turn around and say
that we had low confidence in that statement. For example, if we declare that it is
extremely likely to rain tomorrow, but then say that we have very low confidence
in that statement, that would lead to a state of confusion. People would rightly ask
us how we could give such a high (near certain) likelihood to an event about which
we profess to have little understanding. If we say there is a 99% chance of rain, that
implies that we are nearly certain it is going to rain, which means that we must have
high confidence, never low.

As we show in Table 4, interpreting uncertainty when there are two levels of
imprecision is in some cases rather difficult. The table shows likelihoods conditioned
by levels of confidence. First consider a statement whose likelihood is high, and
subjective confidence on this likelihood is high. This entry in the table is easy to
interpret and would have high likelihood. In fact, all entries in the row related to high
confidence are easy to interpret. The likelihood gives an estimate of the probability
of some event occurring, and the high confidence estimate tells us that the subjective
error bars for that estimate are small. Thus, the likelihoods conditioned by confidence
level are equivalent to the likelihoods when the level of confidence is high.

Now consider entries in the row related to low confidence, and we run into
difficulties of interpretation. If low confidence translates into large error bars about
the likelihood estimate, then the actual likelihood (could it be known) may bear
little relationship to the estimated likelihood. Further, we encounter real problems
when combining very high or very low likelihood estimates (the ‘virtually certain’ and
‘exceptionally unlikely’ from Table 2) with low confidence assessments. As pointed
out earlier, very high or very low likelihoods are only meaningful when confidence
is high. By allowing low confidence assignments to such estimates, confusion may be
created. The simultaneous likelihood/confidence scheme allows the analyst to create
contradictory combinations of likelihood and confidence.

Combinations of likelihood and confidence with medium levels of confidence
are intermediate between the high and low confidence cases, which makes them
somewhat ambiguous. If medium confidence implies moderate error bars, then the

Table 4 Likelihoods conditioned by levels of confidence

likelihood
low medium high

low ? ? ?
confidence medium low–med low–high med–high

high low medium high

This table shows the simultaneous use of likelihoods and levels of confidence. Confidence
and likelihood levels are each classified into ‘low’, ‘medium’ and ‘high’. Entry in each element of
the table represents how the associated confidence level modifies the likelihood. For example, when
the likelihood of an outcome is low and subjective confidence levels about the science surrounding
that outcome are high, then the likelihood is low. However, when likelihood of an outcome is high
and the subjective confidence levels associated with that outcome are low it is impossible to interpret
the likelihood in a meaningful way. Such combinations that are difficult to interpret are represented
by a ‘?’.
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likelihood estimates may be reasonable, but perhaps one category too high or low.
In Table 2 then, the low likelihood estimate might correspond to a confidence
conditioned likelihood in the range from low to medium likelihood. And the high
likelihood estimates could correspond to conditioned likelihoods from medium to
high for example. That is, medium confidence implies a spreading of the likelihood
ranges, assuming that the error bars are moderate. However, if medium confidence
implies larger error bars, then the same confusion that applies to the low confidence
cases would apply to some degree to the medium confidence cases.

A scheme that combines estimates of confidence and likelihood is increasingly
difficult to interpret the lower the estimate of confidence. In the extremes at low
confidence and very high or low likelihood, the combinations make little sense.
These features of the scheme would create a conundrum for analysts that may lead
them to avoid low and medium confidence combinations. This could result in a
bias toward expressing results with higher confidence, since it is meaningful with
this scheme to present only statements associated with higher confidence. Thus an
uncertainty scheme that simultaneously uses likelihood and confidence is ripe to
either contradict itself or bias towards suppression of low confidence. Hence, we
argue that simultaneous use of likelihood and levels of confidence can be dangerous.
Below we propose a method that merges some of the positive aspects of both
approaches (alternatives 1 and 2).

2.3.2 Alternative 3b: adjust likelihood scale according to warranted precision

Another approach to using both likelihoods and levels of confidence is to use a
progressive scheme that articulates the basis for the assessment of each attribute
(Risbey et al. 2002; Kandlikar et al. 2005). This scheme allows analysts to use a se-
quential process that does not treat all uncertain variables as statistically quantifiable,
and provides a mechanism for communicating uncertainty at a level appropriate to
existing scientific understanding. The sequential process is outlined in Table 5 and
described below. The process begins by asking the analyst if a probability distribution
for the outcome or variable under consideration can be provided (i.e., full likelihood
information). This serves to capture either those variables for which historical data
exists, or those for which there is sufficient consensus. If a pdf can be given then
one moves on to the next variable of interest. For many/most variables this is not
the case however, so it is necessary to have more coarse means of representing the
uncertainty as well. In these cases the analyst moves down to the next level in the

Table 5 Characterizations of likelihood for a graduated range of precision levels ranging from fully
specified probability distributions through to qualitative declarations of knowledge and ignorance

Measure of likelihood Justification

1 Full probability density function Robust, well defended distribution
2 Bounds Well defended percentile bounds
3 First order estimates Order of magnitude assessment
4 Expected sign or trend Well defended trend expectation
5 Ambiguous sign or trend Equally plausible contrary trend expectations
6 Effective ignorance Lacking or weakly plausible expectations
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scheme. At each level down the degree of quantification (precision) is reduced. The
idea is to express quantities at a level of precision commensurate with the degree of
confidence with which the quantity is known. The steps in the scheme are as follows:

Step 0: Definition Define the variable or outcome to be examined and the context
in which it is being examined. Though seemingly trivial, this first step is crucial in
ensuring that the outcome in question has a commonly shared understanding and
can be meaningfully quantified. This step also facilitates comparison of uncertainties
across studies and through time.

Step 1: Full probability density function (Robust, well defended probability distri-
bution): Is it reasonable to specify a full probability distribution for the outcome?
If yes, specify the distribution. Justify your choice of distribution and 5th and 95th
percentiles. Are there any processes or assumptions that would cause the 5/95
percentiles to be much wider than you have stated? This is the full likelihood
description. If you cannot provide justifications for why you consider the distribution
shape and 5th and 95th percentiles to be fairly robust, then move to a lower precision
category (step 2).

Step 2: Bounds (Well defended bounds): Is it reasonable to specify bounds for the
distribution of the outcome? If yes, specify 5th and 95th percentiles. Can you describe
any processes or assumptions that could lead to broader/narrower bounds? If so,
describe and revise. The choice of 5th/95th percentiles is by convention. Other ranges
(e.g. 10th/90th) could also be used by different research communities as long as the
choice is made clear. If the bounds are robust to assumptions, then specify your 5/95
bounds and your reasoning for placing them where you did. If you cannot provide
bounds confidently then go to step 3.

Step 3: First order estimates (Order of magnitude assessment): If appropriate,
specify and justify your choice of a first order estimate for the value
of the variable, indicating the main assumptions behind the value given. In
specifying a value, do not report more precision than is justified. For example,
if the value is only known to a factor of two or an order of magnitude, then
report it in those terms. In some cases, powers of ten may be appropriate; in other
cases more nuanced scales may be used so long as they are declared and supported.
How robust is your estimate to underlying assumptions? If it is not particularly robust
to the set of assumptions or outcomes you listed, then go to step 4.

Step 4. Expected sign or trend (Well defended trend expectation): While it may not
be possible to place reliable bounds or a magnitude on the expected change in a
variable, you may still know something about the likely trend. Can you provide
a reasonable estimate of the sign or trend (increase, decrease, no change) of the
expected change? If so, give the expected trend and explain the reasoning underlying
that expectation and why changes of the opposite sign or trend would generally
not be expected. Describe also any conditions that could lead to a change in trend
contrary to expectations. It is reasonable to include in this category changes which
have a fair degree of expectation, but which are not certain. The distinction between
this category and the following one is that the arguments for the expected change
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should be significantly more compelling or likely than those for a contrary change.
If the arguments tend towards a more equal footing, then step 5 (ambiguous sign) is
more appropriate.

Step 5: Ambiguous sign or trend (Equally plausible contrary trend expectations):
In many cases it will not be possible to outline a definitive trend expectation. There
may be plausible arguments for a change of sign or trend in either direction. If that is
the case, state the opposing trends and outline the arguments on both sides. Note key
uncertainties and assumptions in your arguments and how they may tip the balance
in favour of one trend direction or the other. If information about the variable does
not support this kind of supposition, then go to step 6.

Step 6: Effective ignorance (Lacking or weakly plausible expectations): In most
cases we know quite a bit about the outcome variable. Yet despite this, we may not
know much about the factors that would govern a change in the variable of the type
under consideration. As such, it may be difficult to outline plausible arguments for
how the variable would respond. If the arguments used to support the change in
the variable are so weak as to stretch plausibility, then this category is appropriate.
Selecting this category does not mean that we know nothing about the variable.
Rather, it means that our knowledge of the factors governing changes in the variable
in the context of interest is so weak that we are effectively ignorant in this particular
regard. If this category is selected, describe any expectations, such as they are, and
note problems with them.

These six steps provide a mechanism for making explicit the reasons for low/high
levels of confidence based on assessments of data quality and scientific knowledge
at each step. Responses can be given in progressively relaxed quantitative forms,
ranging from full likelihood form (when justified) through to more qualitative charac-
terizations as appropriate. The analyst moves down through the steps and stops when
the level of confidence in the variable matches the precision available in the category.
Though the method is subjective, it is transparent in that it asks the analyst to provide
justifications for the form of quantification selected. Thus the reasoning is clear and
explicit for others to scrutinize. The approach provides a simple, yet consistent way
to use likelihood information in conjunction with subjective knowledge.

In this scheme, the form (scale) in which likelihoods are expressed is conditioned
by subjective judgement (confidence) such that likelihood and confidence remain
consistent with one another at low confidence levels—likelihoods are expressed in
coarse quantitative form when confidence is low. This contrasts with the simul-
taneous likelihood/confidence scheme where likelihood is conditioned by level of
confidence, but the form of likelihood expression does not change.

The determination of appropriate precision levels to express outcomes proceeds
through a process of argumentation that progressively excludes over-precise and
under-precise levels. In practice that determination won’t always be obvious, and the
analyst may wish to employ a variety of measures to assess the quality and precision
of the outcome variable. One approach which appears to be well suited is to use the
NUSAP scheme (Funtowicz and Ravetz 1990), which employs methods to determine
the ‘pedigree’ and quality of the relevant data and methods used (e.g. van der Sluijs
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et al. 2005a,b). Any method which helps to determine the appropriate precision of
outputs could be used in this regard.

3 Likelihood example

A simple example may be helpful in illustrating use of the likelihood schemes.
Suppose we are asked what the likelihood is of the thermohaline circulation shutting
down in response to increased greenhouse forcing of the climate (Mastrandrea and
Schneider 2004). First, we need to remove any ambiguity in the question, so we would
need to specify a time range over which this event might occur. In the limit to infinity,
the question would be almost trivial as the circulation has shutdown in the past and
would likely do so at some point in the future, greenhouse warming or not. Thus, we
might limit the period to some point in time such as 2100 or until some particular
CO2 concentration is reached, say 550 ppm. Further, we need to define whether the
flow simply slows down or reverses completely. Suppose we rephrase the question
then as to what is the likelihood that the thermohaline circulation reduces by at least
half for a stabilized CO2 concentration of 550 ppm? Of course one would also need to
specify or factor in the time path of greenhouse and other emissions and the climate
sensitivity to make the question more precise and account for further uncertainties.
Since we only consider hypothetical responses to the question by way of example,
the full specification of uncertainties is not critical here.

In the case that the likelihood was very high that the circulation would be reduced
by at least half, the answer could be phrased easily enough with either scheme. In the
combined likelihood/confidence scheme (scheme 3a) one would use the likelihood
scale of Table 2 to yield the answer ‘virtually certain’. In order to make such a certain
determination, confidence would also have to be very high. In the precision-based
scheme (scheme 3b), if the underlying knowledge about thermohaline circulation
responses to CO2 were very robust, one could specify a probability distribution for
the value of the flow at 550 ppm. From the distribution it would be clear in this case
that the vast bulk of the probability mass favoured flows less than half the present
value.

Suppose now that confidence in the assessment of thermohaline circulation
changes was not high, but low. Following the earlier quote of Manning and Petit
(2004), could one meaningfully specify that the outcome was virtually certain with
low confidence? We suspect that this would be interpreted by many to mean that
the likelihood of the likelihood (virtually certain) was low; i.e. that it was not likely
to be in this category. But that is presumably not exactly what is intended, for one
would do much better in that case to simply specify a more likely likelihood category.
Further, the specification of likelihoods upon likelihoods conjures up the notion of
an infinite regress (Funtowicz and Ravetz 1990). Presumably, what is intended here
is that one has low confidence in specifying the likelihood and really means to say
that the likelihood is unknown. There is no point in specifying a very precise category
(> 99% chance) and then saying, “well, we don’t know much about that”. This would
be true of every likelihood category in this case and it could be misleading to single
out a single category and make the statement. Rather, one wishes to convey the
uncertainty about likelihood directly and without ambiguity.

In the precision-based scheme, if confidence is low there is no point trying to
provide a pdf or even percentile bounds on the value of the flow at 550 ppm. One
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moves down through the scheme to find an expression for the expected changes in
the flow that matches the level of understanding about that. If a ‘first-order estimate’
could reasonably be given for the value of the flow at 550 ppm, that would be
specified, together with declarations of assumptions underlying the value given. If
confidence were too low to warrant that, one might simply specify the ‘expected
sign’ for changes in the flow. There are good reasons to expect a decrease in the
flow (Manabe and Stouffer 1993), and this much at least could be conveyed, along
with the reasoning. This is not a likelihood in that it does not answer the question
in terms of a probability of the specified outcome. But since that probability would
be vacuous, it doesn’t make sense to give one. One provides as much quantifiable
information as the level of confidence will support. If confidence were even lower
again, the alternative scheme (3b) allows for more speculative declarations of
knowledge and ignorance. In the fixed-precision likelihood scheme of Table 2, one
cannot retreat from specifying a probability, no matter how tenuous the knowledge
base. The fixed-precision likelihood scheme thus becomes a straight-jacket for the
analyst when uncertainties increase.

4 Conclusions

The sequence of quinquennial IPCC reports from 1990 to the present time provides
an interesting study of the evolution of formal uncertainty communication in the
climatological community. In the period prior to the first IPCC reports, subjective
information about uncertainty tended to be included in ad hoc ways. Some of the
first reports on climate change, such as National Research Council (1979) provided
discussion of the reasonings that led them to select particular ranges (for climate
sensitivity for example), though ambiguity remained about just what the ranges were
supposed to represent (van der Sluijs 1997). Subsequent climate change assessments
used a range of different styles to communicate qualitative and quantitative dimen-
sions of uncertainty (National Research Council 1982, 1992; Jaeger 1988).

The earliest IPCC reports provided qualitative statements of confidence in ex-
pressing results. This process was formalized by Moss and Schneider (2000) for the
third IPCC assessment. They introduced a formal scale for assessing levels of confi-
dence, which was adapted by IPCC (2006) to express confidence in terms of the odds
of being correct (Table 3). With preparation for the fourth IPCC assessment, formal
expressions of confidence have now been supplemented with formal expressions of
likelihood (IPCC 2006) (Table 2). This provides analysts with the ability to describe
both the chance of some outcome occurring and the confidence they have in their
prediction of that chance. This offers greater flexibility over uncertainty expression
schemes based on only one of these dimensions. With confidence only schemes there
is too little attention to the extraction of appropriate likelihood information for risk
assessments (Dessai and Hulme 2004) and inevitable ambiguity when likelihood
information is given. Schemes based on likelihood only fall short because they
assume that all relevant uncertainty information can be communicated in likelihood
terms. In practice there are large subjectivities underlying many climate assessments
that are best addressed through some form of confidence assessment.

Recognizing the advantages of using both likelihood and confidence information,
the IPCC AR4 has provided schemes for both these concepts in communicating
uncertainties (Allen et al. 2004; IPCC 2006; Manning 2006). Some analysts will
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undoubtedly use these two schemes in combination. However, some combinations
of likelihood and confidence (as these concepts are defined by the IPCC) are difficult
to interpret. The source of the problem is that likelihood levels contain implicit
confidence levels. For example, very high/low likelihoods only seem meaningful
if interpreted as statements of high confidence. Yet a simple combination of the
IPCC AR4 likelihood and confidence schemes theoretically allows analysts to create
confusing combinations of low confidence and high likelihood. Such combinations
will usually be avoided. However, by avoiding the confusing combinations in this
scheme the analyst may bias uncertainty communication by under-reporting low
confidence cases. This also has the effect of reducing the likelihood/confidence
scheme back to a likelihood only scheme since only higher confidence cases are
retained.

A version of the alternative scheme for reporting uncertainty given here has
also been incorporated into the AR4 uncertainty guidance. The scheme described
here starts with the recognition that different quantities dealt with in IPCC reports
are known with differing levels of precision. One-size-fits-all precision schemes are
bound to be left wanting in such circumstances. The expression of likelihood needs
to be flexible enough to take into account a range of precision levels from fully
quantitative pdf’s to virtual ignorance of quantitative changes. Rather than having
a single quantitative format with a single precision for expressing likelihood, the
level of precision is relaxed as the underpinning knowledge of the quantity degrades.
Full quantitative information is provided for likelihoods when it is reasonable to
do so, and only then. Confidence enters into the alternative scheme via choice of
precision level and by way of explanation; not formally through a labelling scheme
like Table 3. That is, one has to defend the choice of level of precision, explaining
reasoning, outlining assumptions, and evaluating the robustness of the choice. The
levels of confidence are implicit in the choices of quantitative category and in the
articulation of the factors underlying those choices. The assessment of confidence
thus conditions the form in which likelihood is expressed, rather than the value itself
as in conventional schemes.

The IPCC’s uncertainty assessments are marked by increasing formalism, thus
reducing linguistic sources of ambiguity. These developments in uncertainty com-
munication codified in the IPCC provide a richer platform to communicate climate
science for policy, though potential for confusion remains. The new formalisms are
beginning to incorporate deeper forms of uncertainty, opening the door for more
pluralistic conceptions of uncertainty in future assessments.
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