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L E T T E R  T O  T H E  E D I T O R

Causes and consequences of eastern Australia's 2019–20 
season of mega-fires

The 2019–20 fire season in eastern Australia is attracting consid-
erable national and international attention. At the time of writing 
c. 3.8 million ha of mainly temperate forest have burnt in the state 
of New South Wales (NSW; NSW Rural Fire Service, 29/12/2019; 
Figure 1a). Major blazes are also occurring in other states, includ-
ing over 0.5  million ha in the state of Victoria (situated on the 
southern border of NSW). This exceeds the area burnt in the 1939 
Black Friday fires (c. 2 million ha), which were the largest fires re-
corded in temperate Australian forests since European settlement 
(www.ffm.vic.gov.au). Notably, the Gospers Mountain fire on the 
fringes of Sydney is over 508,000  ha (as of 29/12/2019; Figure 
1a), and is still uncontained, having traversed the width of the Blue 
Mountains World Heritage Area and now merged with other fires 
near the coast. It is important to note that this record-breaking  
fire season is not yet over, with the south-eastern Australian fire 

season typically extending to the end of summer (February). Multiple 
large fires are still burning across NSW and in other states, with the 
situation rapidly changing.

For landscape-scale wildfires to occur four conditions are 
needed: (a) the presence of spatially continuous fuel (i.e. plant 
biomass); (b) that fuel being dry enough to burn; (c) an ignition 
source (e.g. lightning or anthropogenic causes); and (d) weather 
conditions favourable to fire spread (Bradstock, 2010). In high bio-
mass ecosystems, such as temperate Australian forests, spatially 
continuous arrays of fuel are generally present, except for in the 
first several years following fire or other disturbance, when fine 
fuel loads can be substantially reduced. Thus, the second precon-
dition, fuel dryness, is a key constraint on the occurrence of large 
wildfires in this region (Nolan, Boer, Resco de Dios, Caccamo, & 
Bradstock, 2016).

F I G U R E  1   (a) Burned areas in the 2019–20 fire season (data from the New South Wales [NSW] Rural Fire Service, 29/12/2019), 
and extent of forests and woodlands (Australian Department of Agriculture and Water Resources, 2019). Note, burned area mapping 
is live operational data and will be subject to further verification at the end of the fire season. (b) 6 monthly standardized precipitation 
evapotranspiration index in October, 2019, (SPEI; Vicente-Serrano et al., 2010; data obtained from https​://spei.csic.es/index.html). (c, d) 
Median values of estimated daily minimum dead fuel moisture content (FMD) across north-east NSW and the Sydney Basin. Values for the 
current fire season are shown in the solid line, as are the range of values between 1990 and 2018 (5th–95th percentile of data shown). The 
upper dashed horizontal line indicates the value of estimated FMD at which forests are available to burn, while the lower horizontal dashed 
line represents the estimated FMD value associated with the historical occurrence of large wildfires across south-eastern Australia (Nolan, 
Boer, et al., 2016)

(b) 6-month SPEI,  October 2019(a) Current season fire extent,  to December 29, 2019 

(c) Median FMD, north-east NSW
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(d) Median FMD, Sydney Basin
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Low fuel moisture content, particularly in live fuels (i.e. foli-
age and twigs) occurs during drought. Drought also triggers leaf 
senescence and shedding in eucalypt forests, resulting in an in-
crease in surface fine fuel loads, which can increase the rate of fire 
spread (Ruthrof et al., 2016). Importantly, during drought and ex-
treme fire weather, normally damp gullies and rainforest patches 
are unlikely to provide their usual impediment to the spread of 
fire across the landscape (Collins, Bennett, Leonard, & Penman, 
2019). Eastern Australia has been experiencing severe drought in 
the lead up to and during the current fire season. In particular, 
much of north-eastern NSW has had the lowest rainfall on record 
and above average temperatures over the 6 months to November 
30, 2019 (www.bom.gov.au/clima​te/maps/). The standardized 
precipitation evapotranspiration index (SPEI; Vicente-Serrano, 
Beguería, & López-Moreno, 2010), which is a simple climatic water 
balance model, similarly shows that drought across eastern NSW 
has been severe (Figure 1b; data from https​://spei.csic.es/index.
html). SPEI values range from −3 to 3, with negative values rep-
resenting dry conditions, and positive values representing wet 
conditions. In north-east NSW, the SPEI for October 2019, cal-
culated on a 6 month analysis window (with a calibration period 
from 1950 to 2010), was −1.8 on average across the region (rang-
ing from −2.6 to −1.1) which corresponds to a 0.04 probability of 
occurrence of these dry conditions over the calibration period. In 
the Sydney Basin, the most populated part of NSW, October SPEI 
was −1.2 on average (ranging from −1.8 at the location where the 
Gospers Mountain fire originated to −0.6 near the coast), which 
corresponds with a 0.11 probability of occurrence of these dry 
conditions.

For fine dead fuels (i.e. litter), moisture content is largely driven 
by atmospheric conditions and by soil water content, for fuels in 
close contact with the soil (Matthews, Sullivan, Watson, & Williams, 
2012; Resco de Dios et al., 2015). We examined temporal trends in 
dead fuel moisture content using a model based on vapour pres-
sure deficit (Nolan, Dios, et al., 2016; Resco de Dios et al., 2015). 
Data were obtained from the Bureau of Meteorology's Australian 
Water Availability Project (Jones, Wang, & Fawcett, 2009). We 
found that estimated dead fuel moisture content was mostly at 
the lower range of historical values throughout 2019 (Figure 1c,d). 
Furthermore, from September/October onwards, estimated dead 
fuel moisture content was mostly below critical threshold val-
ues associated with the historical occurrence of large wildfires in 
south-eastern Australian forests (Nolan, Boer, et  al., 2016). The 
occurrence of drought and low values of dead fuel moisture con-
tent primed the landscape for the unprecedented fires now burn-
ing under unrelenting severe fire weather conditions (http://www.
bom.gov.au/clima​te/curre​nt/state​ments/​scs72.pdf).

Impacts from this fire season on forests are difficult to assess 
until the season draws to a close, as further areas may be subject 
to fire, and postfire recovery depends on the state of the postfire 
climate. The eucalypt forest communities that cover most of the 
fire affected area are resilient to high severity wildfire (Collins, 
2020). These forests generally recover from fire by resprouting 

new foliage. Whether postfire resprouting will be affected by the 
severe drought, for example through depletion of carbohydrate 
reserves, is uncertain. Fire-sensitive forest communities, such 
as remnant rainforests, have persisted in a fire-prone Eucalyptus 
matrix over geological timeframes within areas where high fuel 
moisture content is usually maintained throughout the fire season 
(Bowman, 2000). Extreme drought can dry fuels below critical 
thresholds within these fire refugia, allowing the encroachment 
of wildfire into these less fire-resilient vegetation communities 
(Collins et  al., 2019). The 2019–20 fires have burnt significant 
areas of the Gondwana Rainforests, Australia World Heritage 
Area (potentially up to ~50% of its current distribution), posing a 
major threat to this globally significant vegetation. The impact of 
the fires on these rainforests, and many other fire-sensitive taxa, 
will become more apparent once necessary fire severity mapping 
and postfire field surveys are conducted.

The current 2019–20 fire season in Eastern Australia is un-
precedented in the size and number of fires burning in temperate 
Australian forests. These fires are an indication that changes to the 
fire regime predicted under climate change, including more frequent 
and more severe fires (Bradstock, 2010; Clarke & Evans, 2019), may 
now be occurring.
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