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ARTICLE INFO ABSTRACT

Keywords: Invasive plant and environmental pests can seriously impact environment, economy, health and amenity. It is
APPDIS challenging to form response policies given the diversity of pest species; complex spatiotemporal interplay be-
AADIs_ tween arrival, spread, surveillance, and control; and limited field data when pests are rare/absent. Models can
:’l:::l;':i provide useful decision support through the exploration of incursion pathways and comparison of surveillance
Environmental pests and control strategies. However, increased use of quantitative models to inform pest management requires
Biosecurity adaptable modelling frameworks. The new Australian Priority Pest and Disease modelling framework (APPDIS)

allows pest models to be constructed through user configuration choices for a broad range of different pest types.
Pest populations may be defined as point incursions, established populations, or estimated mechanistically from
environmental criteria. Spread occurs at multiple scales, through either simple mathematical kernels, or more
complex spatial pathways, depending on data availability and pest type. Useful experiments can be conducted on
general surveillance, specific surveillance, and treatment regimes. Control activities are dynamically resource-
constrained and costed for relative comparisons in terms of benefit and cost. A case study on a tramp ant

incursion is provided for illustrative purposes.

1. Introduction

Plant and environmental pests can inflict serious damage to the
economy, environment, human health, and social amenity (Davis,
2009). It typically falls to government to construct and fund robust
policies for the early detection of, and response to, harmful invasive
pests. However, it can be challenging to form cost effective policies
given the inherent uncertainty of, and complex spatiotemporal interplay
between, the arrival, spread, detection and control of exotic pests
(Schmidt et al., 2010; Keith and Spring, 2013). Further, when a pest is
rare or absent there may be limited local experience and field data to
inform policies for surveillance and control/eradication. Models can
help policy makers explore:

e potential entry points and arrival rates of invasive pests (Douma
et al., 2016; Sikes et al., 2018; Faulkner et al., 2020; Camac et al.,
2020),

e potential distribution of a pest species in an environment (Sutherst
et al., 1999; Phillips et al., 2006; Deutsch et al., 2008; Aurambout

etal., 2009; De Meyer et al., 2010; Yang et al., 2013; De Villiers et al.,

2015),

potential spread of a pest (Renton et al., 2011; Rebaudo et al., 2011;

Adeva et al., 2012; Rasmussen and Hamilton, 2012; Lustig et al.,

2017; Cook at el., 2019; Briscoe et al., 2019),

e surveillance and treatment strategies (Parry et al., 2006; Keith and
Spring, 2013; Parnell et al., 2014; Baxter et al., 2017),

o the effect of resource and/or cost constraints on surveillance and
treatment (Bogich et al., 2008; Kompas and Che, 2009; Hauser and
McCarthy, 2009; Rout et al., 2011; Kompas et al., 2016; Spring et al.,
2017).

It is, however, very difficult to encompass all aspects of an invasive
pest incursion into a single decision support model. The challenge of
modelling population spread and control is magnified by the diversity of
plant and environmental pests, modes of dispersal, and availability of
data for estimating biophysical and economic relationships in detection
and control. A detailed spatially-explicit model of an individual pest
may capture life-cycle and ecological specifics, and take into account
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environmental heterogeneity, but can be complex and expensive to
construct, and may not readily translate to other pests. Generalised
mathematical models are simpler and cheaper to build but may not
capture pest-specific ecological nuances and environmental
heterogeneity.

These challenges in pest spread modelling have resulted in a lack of
general-purpose modelling frameworks, despite the large number of
problem-specific models that have been developed. It has been argued
that spread simulation models with the capacity to capture complex
spatio-temporal processes, such as human-assisted and vector-borne
spread, have prohibitive time and resource costs in developing,
parameterizing, and testing the models (Robinet et al., 2012). This re-
flects an assumption that biosecurity management personnel may lack
the time and/or expertise to conduct such analyses. Most
general-purpose modelling frameworks for informing pest risk analysis
have consequently focused on capturing simpler processes governing
pest arrival and spread (Rafoss, 2003; Robinet et al., 2012; Kehlenbeck
et al., 2012). There remains a need for general-purpose modelling
platforms with the capacity to capture complex spatio-temporal
processes.

The Australian Priority Pest and Disease modelling framework
(APPDIS) is an attempt to incorporate the key aspects of invasive pest
arrival, spread, detection and control in a pragmatic ‘middle ground’
modelling approach — incorporating both generalised and pest-specific
techniques. An APPDIS user can create a variety of pest-specific
models by supplying datasets and parameter values (ie., model crea-
tion is largely a configuration activity that does not require specialised
mathematical reformulation and/or recoding). When field or environ-
mental data is scarce or unreliable, APPDIS can be configured to spread a
pest through simple aggregative mathematical pathways. Alternatively,
data permitting, APPDIS can be configured to spread a pest through
individual data-driven pathways that consider pest ecological nuances
and environmental heterogeneities.

Effective early detection surveillance can pre-emptively lower a
country’s potential liability for incursion costs. Modelling approaches
need to consider the likely points where a pest can establish and po-
tential spread in relation to surveillance intensity and extent. Scenarios
need to consider the likely success of response activities at the initial
detection in order to identify the value of surveillance. An APPDIS model
allows a pest to be introduced anywhere in the study area at any point in
time. Once established, a pest population spreads over time and space
according to environmental suitability, via both natural and assisted
spread pathways. The simulated initial detection of a pest may arise
from general surveillance or early detection surveillance via a perma-
nent trapping grid. APPDIS allows useful experimentation on the cost
effectiveness of a trapping grid design (via configurable trap locations,
spacings, lure types, costs, and sensitivity/specificity), and the impli-
cations of early versus late detection.

Containment and eradication of a pest relies upon adequate delimi-
tation of an incursion. It can be challenging to estimate the distribution
of a pest in relation to presence and absence data, particularly for pests
with broad host ranges, complex spread pathways, and poor detect-
ability. There are options to either increase surveillance to better un-
derstand the extent of the incursion or to increase treatment intensity
and extent in order to cover uncertainty. Even for well-studied pests,
there can be gaps in the understanding of ecology, surveillance efficacy,
and control strategies. The significance of uncertainty is often not
appreciated until viewed in the context of a control and containment
program. Spatiotemporal models can be useful for testing scenarios with
complex relationships that are subject to a great deal of uncertainty.
APPDIS allows useful experimentation on the cost effectiveness of
delimiting surveillance and post-treatment surveillance (via config-
urable trap spacings, lure types, costs, and sensitivity/specificity), and
treatment (via configurable treatment schedules, efficacy and cost). All
control actions simulated by APPDIS have user-defined durations, costs,
and resource requirements. This allows investigation into the impact of
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resource shortfalls on the efficacy and cost of managing an incursion.

A case study on the potential eradication of an established tramp ant
population illustrates the steps in configuring an APPDIS pest model and
provides some examples of model use. Firstly, the tramp ant population
is allowed to spread unchecked and emergent spread rates are compared
with field observations. Secondly, surveillance and treatment options
are enabled and a sensitivity analysis is conducted on the effect of trap
spacing on the cost effectiveness of eradication. It is important to note
that the purpose of the case study is to demonstrate configuration and
use of the modelling framework, and is not intended to inform policy on
potential eradication of the pest in question.

2. Methods
2.1. The APPDIS modelling framework

APPDIS is a new modelling framework that can be used to instantiate
models of the spread and control of plant and environmental pests. It is
the Plant Health equivalent of the Australian animal disease modelling
framework AADIS (Bradhurst et al., 2015), which can be used to
instantiate models of livestock disease such as foot-and-mouth disease,
bluetongue, classical swine fever and African swine fever.

APPDIS pest models are stochastic discrete-event simulations similar
to geographic automata (Torrens and Benenson, 2005; Laffan et al.,
2007). The study area of interest is represented by a grid delineated by
lines of latitude and longitude. The modelling unit of interest is a cell
within the grid. Each cell has environmental attributes (such as eleva-
tion, average weekly temperature, annual rainfall, human population
density, vegetation index, land use category and average weekly wind
speed), that can be used to estimate the spatiotemporal habitat suit-
ability of the cell for a pest of interest.

The problem of modelling the incursion, spread, detection, and
control of a pest in a gridded environment is reduced to seven separate
sub-problems:

e which cells are initially populated with the pest?

e how does the within-cell abundance of the pest change over time?

e when/how might the pest population spread between cells?

e how cost effective are surveillance activities at detecting the pest?

e how cost effective are treatment programs at controlling/eradicating
the pest?

e how cost effective are post-treatment surveillance activities at
detecting residual pest populations?

e how do resource constraints affect surveillance, treatment and post-
treatment activities?

2.1.1. Definition of an initial pest population

The grid extent and cell dimensions of an APPDIS model are user
configurable and facilitate regional studies (inside a localised grid) up to
national-scale studies (inside a much larger grid). The choice of cell size
will largely depend on the pest being modelled, the extent of the study
area, and the granularity of the relevant environmental data. A large cell
size may not capture within-cell spatial heterogeneities in vegetation,
land use, elevation, temperature, etc. A small cell size captures spatial
temperature heterogeneities (data granularity permitting) but comes
with a computational overhead for large grids. It is advisable to restrict
the total number of grid cells to under 1,048,576 so that the raster data
input comma-separated value (CSV) file (which is indexed row-major
order on cell ID), can be opened by a standard desktop spreadsheet
program.

APPDIS provides three ways for a user to define the initial pest
population in the grid:
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e point incursion — one or more cells may be explicitly seeded with a
pest propagule. This represents an undetected post-border arrival of
an exotic pest, for example, at a port.

e established population — an established pest population can be
defined via pre-defined population densities or counts per cell,
perhaps informed by field data.

e built-in mechanistic species distribution model — the location of the
initial pest population can be automatically estimated by the model
based on configurable ranges of environmental criteria such as
temperature, vegetation, water sources, elevation, rainfall, land use,
etc.

2.1.2. Within-cell abundance of a pest

Each infested cell agent has an embedded population model that
estimates the population density of a pest within a cell over time, for
example, via logistic growth (Kingsland, 1982; Kehlenbeck et al., 2012;
Law et al., 2003). This represents how a pest population in a naive cell
may initially grow exponentially, but then growth will slow as the
population approaches the carrying capacity of the cell (Roughgarden,
1975). The carrying capacity of a cell is derived from user-defined
habitat suitability data specific to the pest being modelled. This allows
pest abundance to vary across the model grid based on environmental
variables such as temperature, elevation, land use, rainfall, and
vegetation).

A logistic population growth rate is unlikely to be a static value, and
actual population values may not be available from empirical studies.
APPDIS allows the growth rate to vary with temperature, perhaps
informed by laboratory data on pest development and mortality
response to temperature. This approach allows colder temperatures to
be associated with negative growth rates and trigger seasonal declines of
a population. Fig. 1 illustrates how a logistic function can have a con-
stant growth rate R or a variable growth rate R(z) that depends on
temperature .

The logistic growth model for a temperature-dependent growth rate
is given by Equation (1).

K

. SEEN G
1 +{d(t— 0 l}e

d(s) = (Eqn. 1)
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d(t) = pest population density on day t (normalised with respect to
carrying capacity K)

K = carrying capacity of the cell (normalised across all cells)

R(7) = pest population growth rate for temperature ©

If the population in a cell falls below a configurable threshold it
becomes quiescent and declines to extinction over a configurable period.
This approximates an Allee effect (Stephens and Sutherland, 1999)
whereby small or sparse populations (represented by very low cell
population densities), can suffer from reduced population growth that
leads to extinction.

Although not yet investigated, it would be possible for a cell agent to
have multiple population models, each corresponding to a distinct
species. This functionality could be useful for exploring interspecific
mutualism with respect to presence and abundance.

2.1.3. Between cell spread of a pest

As the within-cell population density of a pest increases or decreases
over time (per the embedded population model), the rising or falling
‘dispersal pressure’ within the infested cell affects the probability of
between-cell spread. The steady short-range spread of a pest between
adjoining cells is modelled by a diffusion pathway. The sporadic longer=
range spread of a pest between cells is modelled by one or more jump
pathways.

2.1.3.1. Diffusive spread between adjoining cells. The progressive spread
of a pest from an infested cell into an adjoining candidate cell is
modelled with a stochastic diffusion process that considers:

o the infested cell’s pest population density

o the infested cell’s environmental conditions (e.g., certain wind and/
or temperature criteria may be required for diffusion to occur)
(optional)

o the environmental suitability of the candidate cell (so that more
suitable cells will have a higher probability of pest incursion than less
suitable cells) (optional)

e the elevation gradient between the centroids of the source and
candidate cell (optional)

Daily decisions as to whether an infested cell diffuses into the

d pest populaton density ¢

o
w

normalise
o
N

= {emperature-dependent growth
rate R(1)

= coONstant growth rate R

Fig. 1. A logistic growth function with a constant growth rate (R = 0.15) compared to one with a temperature-dependent growth rate R(t). In both cases the

normalised carrying capacity K is 0.7.
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adjoining candidate cells are made by sampling from binomial distri-
butions of the probability of diffusion (Equation (2)).

pa) =1 —{1-P;S1e}" (Eqn. 2)

where

pd(t) = probability of diffusion occurring on day t

P4 = baseline daily probability of diffusion of a viable number of
pests from an infested cell into another cell (configurable per land
use category of the infested cell)

S = relative suitability of the candidate cell (normalised across all
cells) (optional)

8 = distance weight for the infested and candidate cells (optional)
A = temperature weight of the infested cell (optional)

¢ = elevation weight for the infested and candidate cells (optional)

The (optional) distance weight § is a simple relative measure of
distance between the centroids of the source infested cell and the
adjoining candidate cells, and dampens the probability of diffusion into
the north-west, south-west, north-east and south-east neighbours (6 =
0.7), as opposed to the north, south, west, and east neighbours (5 = 1.0).

The (optional) temperature weight A is derived from the relationship
between the average weekly temperature 7 for the infested cell and four
configured temperature thresholds for pest activity: min, optimal_lower,
optimal_upper and max.

A = 0 (for T < min)

A = linear increase from 0 to 1 (for min < t < optimal_lower)
A =1 (for optimal lower < t < optimal upper)

) = linear decrease 1 to 0 (for optimal_upper < T < max)

A = 0 (for T > max)

The (optional) elevation weight ¢ is derived from the gradient be-
tween the centroids of the infested cell and the candidate cell. It allows
the user to increase/decrease the probability of diffusion uphill/down-
hill (per 100 m difference in elevation).

The baseline daily probability of diffusion P4 includes the probability
of post-dispersal establishment in the candidate cell. A diffusion event
conveys a user-defined propagule from the source infested cell to the
destination cell. If the destination cell is naive then it acquires an
equation-based population model (Equation (1)) with the propagule as
the initial population. If the destination cell is already infested, then the
propagule is added to the population and the population model recal-
culated. A cell can receive multiple diffusion events over the course of a
simulation. APPDIS allows environmental criteria (temperature, habitat
suitability, elevation, etc.) to be disabled, in which case diffusion is
driven purely by the daily probability P4, which in turn can be estimated
by reverse engineering observed spread velocities of the pest.

2.1.3.2. Jump spread between cells. Invasive pest populations may
spread over multiple scales. Whilst natural dispersal may result in short-
range diffusive spread, less predictable mechanisms such as windborne
spread and human-mediated dispersal can lead to longer-range jumps
(Robinet et al., 2009; Gippet et al., 2019). The sporadic longer-range
spread of a pest from an infested cell into non-adjoining cells is
modelled with one or more stochastic jump processes that consider:

o the infested cell’s pest population density

o the infested cell’s environmental conditions (e.g., certain wind and/
or temperature criteria may be required for a jump to occur)
(optional)

e the environmental suitability of the candidate destination cell
(optional)

e the human population density of the infested cell (optional)

o the land use of the infested cell (optional)
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o the land use of the candidate destination cell (optional)
e waterways in the infested and candidate destination cells (optional)

Daily decisions as to whether an infested cell disperses into a distant
cell are made by sampling from a binomial distribution of the proba-
bility of a jump event (Equation (3)).

pty=1-{1-Poi}" (Eqn. 3)

where

pj(t) = probability of a jump occurring on day t

P; = baseline daily probability of a jump occurring

® = human population density of the infested cell (normalised across
all cells) (optional)

)\ = temperature weight of the infested cell (optional)

The jump direction may be random, influenced by the land use
category of the source and destination cells, or influenced by the weekly
prevailing wind direction. The jump distance is determined by sampling
from a BetaPERT (Vose, 2008) distance distribution. A catchment area of
cells is formed at the site of the jump landing based on either a
user-defined Moore neighbourhood range or radial distance. The jump
destination cell is then selected from the candidates within the catch-
ment area either randomly or based on suitability criteria.

As per diffusion, the baseline daily probability P; of a jump occurring
includes the probability of post-dispersal establishment in the candidate
cell. A jump event conveys a user-defined propagule from the source
infested cell to the destination cell. If the destination cell is naive then it
acquires an equation-based population model with the propagule as the
initial population. If the destination cell is already infested, then the
propagule is added to the population and the population model recal-
culated. A cell can receive multiple jump events over the course of a
simulation. P; can be estimated either from expert opinion or the fre-
quency that satellite pest colonies are observed arising unexpectedly
some distance from a known infested area.

2.1.4. General surveillance

General surveillance by members of the public is an important means
of early detection of plant and environmental pests (Cacho et al., 2010;
Hester and Cacho, 2017; Wilson et al., 2004). All cells that have both a
pest population and a human population are scanned daily for de-
tections by a stochastic process that considers:

o the infested cell’s pest population density
o the infested cell’s human population density
o the sensitivity of the observer

The probability of a general surveillance detection event occurring
on any given day is adapted from Sharov et al. (1998) and Bogich et al.
(2008), and is given by Equation (4).

p”)(t) =1 - e—d(r) ® Se (Eqn' 4)

where

prp(t) = probability of a true positive detection occurring on day t
® = human population density of the infested cell (normalised across
all cells)

Se = sensitivity of the observer

The observer sensitivity for unmanaged cells is defined separately to
that for managed cells. A managed cell is defined as any cell that is
undergoing, or has undergone, delimiting surveillance or treatment. The
model provides the option of the first general surveillance detection
occurring on a fixed day rather than on a stochastically determined day.
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This allows useful experimentation on the impact of ‘time to detection’
on incursion severity and cost. Fig. 2 uses Equation (4) (with Se = 0.70),
to illustrate how the probability of a general surveillance detection
varies with respect to the normalised pest population density and the
normalised human population density.

2.1.5. Early detection surveillance

There is considerable interest in the cost effectiveness of surveillance
strategies for invasive species (Field et al., 2004; Gerber et al., 2005;
Bogich et al., 2008; Hauser and McCarthy, 2009; Kompas and Che, 2009;
Cacho et al., 2010; Epanchin-Niell et al., 2014; Holden et al., 2016).
APPDIS allows the user to define a permanent trapping grid of geo-
located traps with specified lure types. All cells that have both a pest
population and a permanent trap location are scanned daily for active
detections. The detection of a pest population is modelled with a sto-
chastic process that considers:

the infested cell’s pest population density

the lure type and spacing of traps in the infested cell

the sensitivity of the surveillance process (traps and personnel)
the specificity of the surveillance process (traps and personnel)

e o o o

The probability of a true positive detection occurring on day t is
adapted from Sharov et al. (1998) and Bogich et al. (2008), and is given
by Equation (5).

pr(f) =1 —e oS (Eqn. 5)

where

prp(t) = probability of a true positive detection on day t

a(t) = pest area of the infested cell in hectares on day t

¢ = trap density (traps per hectare) in the infested cell (= 10,000/
(trap spacing in metres)?)

Se = sensitivity of the surveillance process (traps and personnel)

As the pest area a(t) of an infested cell is not actually known (as cells
are atomic), it is proxied by multiplying the normalised population
density of the cell d(t) by the cell area in hectares. The model also
provides the option of the first early detection occurring on a fixed day
rather than on a stochastically determined day. This allows useful
experimentation on the impact of ‘time to detection’ on incursion
severity and cost. Fig. 3 uses Equation (5) with Se = 0.96 to illustrate
how the probability of early detection inside a 10-ha cell varies with the
normalised pest population density and trap spacing.

If a surveyed cell does not yield a true positive result, then it is

0.6
0.5
0.4
0.3

0.2

probability of detection

0.1

F

=
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checked for a false positive result. The probability of a false positive
detection occurring is given by Equation (6).

pp=1-5, (Eqn. 6)

where

prp = probability of a false positive detection
Sp = specificity of the surveillance process (traps and personnel)

If a surveyed cell does not yield a positive result, then a true/false
negative result is assigned according to the actual absence/presence of
the pest in the cell.

2.1.6. Delimiting surveillance

After a pest population has been detected in a cell, the surrounding
cells undergo delimiting surveillance. Delimiting surveillance comprises
a configurable number of periodic surveillance visits. Delimiting sur-
veillance operates in either Moore mode (where the cells in the Moore
neighbourhood of the detected cell are surveyed), or Radial mode
(where all cells within a configurable distance of the detected cell are
surveyed). The detection of a pest population through delimiting sur-
veillance is modelled by a stochastic process that considers:

o the surveyed cell’s pest population density

e trap spacing in the surveyed cell

o the sensitivity of the surveillance process (traps and personnel)
o the specificity of the surveillance process (traps and personnel)

The daily probability of a true positive detection is given by Equation
(5). If a cell does not yield a true positive result it is then checked for a
false positive detection (Equation (6)). A positive surveillance result
triggers a treatment program. If a cell does not yield a positive result,
then a true/false negative result is assigned according to the actual
absence/presence of the pest in the cell. The pest is deemed absent from
a cell once a configurable number of consecutive negative surveillance
results has been reached.

2.1.7. Treatment

All cells that have yielded a positive result (true or false), from
general surveillance, early detection surveillance, or delimiting sur-
veillance, undergo a treatment program. A treatment program com-
prises a configurable number of treatments, conducted at a configurable
period. Each treatment reduces the population by a percentage amount
(determined stochastically between a configured minimum and
maximum reduction). A pest population is deemed extinct if a treatment

—0,1
—0.2
0.3
—04
—0.5
0.6
—0.7
0.8
—0.9

g. 2. Probability of general surveillance detection with respect to pest population density and human population density.



Red Imported Fire Ants in Australia
Submission 10 - Supplementary Submission

R. Bradhurst et al.

Environmental Modelling and Software 139 (2021) 105004

—5

c
i)
B
s 06
-
;_1 0.4
2 02
L
o
S 0

00 01 02 03 04 05

pest populaton gensity

—10

20

—30

—40

50

—60

70

— 80

06 07 08 09 10 an

[RVIV]

Fig. 3. Probability of specific surveillance detection in relation to pest population density and trap spacing.

program reduces it to below the configured minimum population size. A
treatment program may operate in Spot mode (where only the detected
cell is treated), Moore mode (where all cells in the Moore neighbour-
hood of the detected cell are treated), or Radial mode (where all cells
within a configurable distance of the detected cell are treated).

2.1.8. Post-treatment surveillance

Post-treatment surveillance commences at a configurable period
after the completion of the last scheduled treatment. A post-treatment
surveillance program comprises a configurable number of periodic
surveillance visits. Post-treatment surveillance is modelled with a sto-
chastic process that considers:

the surveyed cell’s pest population density

the trap spacing in the surveyed cell

sensitivity of the surveillance process (traps and personnel)
specificity of the surveillance process (traps and personnel)

e o o o

As per delimiting surveillance, the daily probability of a true positive
detection is given by Equation (5). If a cell does not yield a true positive
result it is then checked for a false positive detection (Equation (6)). A
positive post-treatment surveillance result triggers another treatment
program. If a cell does not yield a positive result, then a true/false
negative result is assigned according to the actual absence/presence of
the pest in the cell. A cell is deemed free of the pest after a configurable
number of consecutive negative surveillance results.

2.1.9. Resourcing

The active surveillance and treatment of plant and environmental
pests are typically resource-constrained processes (Rout et al., 2011;
McCarthy et al., 2012). An APPDIS ‘resource’ is abstract in the sense that
it is a (user-defined) set of personnel/equipment/supplies required to
carry out a specific job. The model maintains pools for each resource
type (early detection surveillance, delimiting surveillance, treatment,
and post-treatment surveillance). The resourcing profile for each pool is
configurable as to whether resource levels are fixed or vary over time.

When a field operation is scheduled a resource is requested from the
corresponding pool. If a resource is available, then it is ‘borrowed’ from
the pool and the field operation commences. If a resource is not avail-
able, then the field operation is queued until such time as the required
resource becomes available. Once a field operation has completed, the
resource is ‘returned’ to the pool.

The model reports the daily resource usage for early detection sur-
veillance, delimiting surveillance, treatment, and post-treatment sur-
veillance. Resource pools can be configured to be ‘unlimited’ in which
case resources are always immediately granted upon request. In this
mode the resourcing profile of an outbreak is a model output instead of a
model input that constrains the efficacy of the control program.

2.1.10. Implementation highlights

The APPDIS modelling framework utilises an agent-based modelling
platform (Bradhurst, 2015) which can operate in four modes: contagious
livestock disease, vector-borne livestock disease, plant/environmental
pests, and human disease. When modelling the spread and control of
contagious disease in livestock, the agents are herds, farms (containers
of one or more herds), saleyards and abattoirs. When modelling the
spread and control of plant and environmental pests, the agents are cells
in a lattice environment. When modelling the spread and control of
insect vector-borne livestock disease (such as bluetongue), the agents
are herds, farms, saleyards, abattoirs, and cells. When modelling the
spread and control of human disease the agents are people. Descriptions
of the vector-borne livestock and human disease modes will appear in
future papers. The modelling behaviour (livestock disease, plant/en-
vironmental pests, or human disease) of an instantiated model is purely
determined by the configuration files and database loaded.

An APPDIS agent can have an embedded population model of the
within-agent abundance over time. For example, when modelling an
exotic fruit fly incursion each infested cell agent has an embedded
temperature-dependent logistic growth model that predicts the within-
cell population over time. An agent can also have an embedded infec-
tion model of the within-agent prevalence of a pathogen in the popu-
lation. For example, when modelling the spread of a contagious disease
in feral pigs each infected cell agent has an embedded SEIRD (Suscep-
tible, Exposed, Infectious, Recovered, Deceased) compartmental disease
model (implemented as a system of ordinary differential equations), that
predicts the within-cell infected and infectious prevalence of the disease
over time. The interplay between a cell agent’s population and infection
models will be described in a separate paper. The details of the popu-
lation and infection models are private to the agent, which means that
alternate within-cell models can be used without impacting the greater
model.

APPDIS models scale well as the agents are threadless and light-
weight. APPDIS agents interact in a spatially-explicit disaggregated
environment comprised of threaded ‘components’ that operate concur-
rently and independently (Bradhurst, 2015). Examples of components
relevant to contagious livestock disease include local spread, direct
spread, saleyard spread, indirect spread, airborne spread, movement
restrictions, surveillance, tracing, vaccination, stamping out and
post-outbreak surveillance (Bradhurst et al., 2015). Examples of com-
ponents relevant to plant/environmental pests include unaided diffusive
spread, human-mediated hitchhiking spread, wind-assisted airborne
spread, early detection surveillance, general surveillance, delimiting
surveillance, treatment, and post-treatment surveillance. All APPDIS
components are independent and can be separately enabled/disabled.
As the implementation of each component is private, alternate compo-
nents can be swapped in and out. For example, the implementation of a
treatment component can completely change without impacting the rest
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of the model.

APPDIS has a concurrent software architecture that allows it to take
advantage of the cheap parallelism available with multi-core personal
computers. This, together with other design efficiencies, such as an in-
memory database and grid-based spatial indexing, allow APPDIS to
efficiently conduct national-scale simulations (Bradhurst et al., 2016).
Further details on the underlying model and software architecture can
be found in Bradhurst (2015) and Bradhurst et al. (2016).

The primary APPDIS outputs are CSV files which can be post-
processed statistically. APPDIS also provides a graphical user interface
for interacting with the model and dynamic visualisation of incursions as
they unfold. The ability for APPDIS to convey incursion and manage-
ment concepts visually may suit it to classroom use. Fig. 4 is a screenshot
of APPDIS depicting a hitchhiking escape of a tramp ant population from
within the managed area. The population model of any cell can be
visualised, for example, Fig. 4 depicts the population of cell 70814 being
knocked down over the course of a treatment program and the residual
population recovering over time.

2.1.11. Verification and validation

The APPDIS and AADIS modelling frameworks have a common un-
derlying software baseline (Bradhurst, 2015). APPDIS thus inherits from
previous AADIS verification and validation activities, and modelling
studies (Bradhurst, 2015; Bradhurst et al., 2015; Bradhurst et al., 2016;
Garner et al., 2016; Bradhurst et al., 2019; Firestone et al., 2019;
Bradhurst et al., 2021; Firestone et al., 2020).

APPDIS models were instantiated for Anoplolepis gracilipes (yellow
crazy ant) and Bactrocera dorsalis (Oriental fruit fly) case studies during
development of the framework. A model has also been developed of the
spread of disease in feral pigs. The yellow crazy ant model is described in
this paper, and the Oriental fruit fly and feral pig models will be
described in separate future papers. APPDIS validation will be an
ongoing process as each new pest (or pest group) model instantiation
will require separate validation.
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2.1.12. Hardware and platform specifications, and software availability

APPDIS is written in Java (Oracle, 2020), and employs open-source
products such as SQL Power Architect (SQL Power Group, 2020), Post-
greSQL (2020), OpenMap (BBN, 2016) and Log4j (Apache, 2020).
APPDIS runs under either Linux™ or Windows™ with a recommended
minimum hardware configuration of a quad-core processor, 16 GB RAM
and a 1920 x 1080 display resolution. The model is available at no cost
for non-commercial use under a licensing agreement with the Australian
Department of Agriculture, Water and the Environment.

2.2. Case study: Established population of tramp ants

Tramp ants are a diverse group of invasive ant species that can
severely impact native species and habitats, agriculture, forestry, human
health and social amenity. If introduced they can rapidly establish and
spread through natural and human-mediated dispersal (Abbott, 2005;
Hoffman, 2014).

An example of a tramp ant that is a concern to Australia is Anoplo-
lepis gracilipes (yellow crazy ant (YCA)). YCA causes severe ecological
damage (Abbott, 2005, 2006), and can affect the horticulture industry
by farming sap-sucking scale insects for honeydew. This can lead to
larger infestations of pests on host plants (Haines and Haines, 1978b;
Lach and Barker, 2013; Helms, 2013), and an increase in the risk of
disease being transmitted to plants through insect vectors. Supercolonies
are formed through colony budding and the absence of intraspecific
aggression (O’Dowd et al., 1999).

2.2.1. Model setup

2.2.1.1. Study area. This study area for this case study was approxi-
mately 18,724 km? (bounded by latitudes —16.450 to —17.941 and
longitudes 145.090 to 146.149). A cell size of 10 ha was chosen to reflect
the observation that a YCA supercolony spanning an area less than 10 ha
tends to be a single contiguous population, whereas a supercolony
spanning an area greater than 10 ha tends to be comprised of fragmented

I3t 7 ) Zal=1L )

Fig. 4. APPDIS spread and control visualisation.
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populations (Hoffmann, 2014).
APPDIS raster data layers were defined for:

o land use (sugar cane farms, sugar cane railway corridors, managed
land, natural areas)

e watercourses

e elevation

e human population density

e YCA habitat suitability (land = suitable, sea/lakes = unsuitable)

YCA densities have previously been estimated at between 0.2 million
and 3.5 million per hectare (Haines and Haines, 1978a), and up to 20
million per hectare (Abbott, 2005). As the habitat suitability data layer
for this study was very simple, a conservative grid-wide carrying ca=
pacity of 2 million YCA per hectare was chosen. This means that every
land cell is deemed equally suitable for YCA with a nominal carrying
capacity of 20 million. This simplistic assumption could be improved
with a richer habitat suitability layer that incorporates variables such as
rugosity and food sources in the determination of cell suitability, which
in turn would provide heterogeneity in cell carrying capacity.

The initial YCA population (Fig. 5) spanned 154 cells. Cell popula-
tion densities were synthesized, graduating from a population of 20
million in cells at the centre of large clusters, down to 2000 in cells at the
edge of clusters. This resulted in an overall initial YCA population of

i- ossman
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approximately 310 million across 1540 ha. The initial YCA population of
any subsequently infested cell was an arbitrary propagule, deemed to
comprise 24 workers and 1 queen.

2.2.1.2. Within-cell abundance. The abundance of the YCA population
within an infested cell over time was represented by a deterministic
logistic growth function (Equation (1)) with a temperature-independent
population growth rate R(t) = 0.025 based on the assumption that for an
ideally suitable 10 ha cell, an uncontrolled YCA population will take
approximately 2 years to grow from a single propagule (n = 25) to 99%
of the cell carrying capacity (n = 19.8M). This implies that 50% of the
carrying capacity is reached after 454 days. Natural contractions of YCA
populations (Abbott, 2006) were not modelled.

2.2.1.3. Diffusive spread of YCA between adjoining cells. An APPDIS
diffusion spread pathway was instantiated to model the steady spread of
YCA over time to adjoining cells. The baseline daily probability of
diffusion Pd (required for Equation (2)), depends on the land use cate-
gory of the infested cell (Table 1). This allows heterogeneity in the
diffusive behaviour. For example, diffusion in a cane farm cell (where
natural budding is perhaps augmented by short-range movements
arising from within-farm activities such as harvesting), is assumed to be
more vigorous than diffusion in a national park cell (that is primarily
due to natural budding).

Legend N
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Fig. 5. Initial yellow crazy ant population.
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Table 1

Selected parameterisation of the YCA diffusion pathway.
Parameter Value
Dependent on land use true
Daily diffusion baseline probability P4 on a cane farm 0.000445'
Daily diffusion baseline probability P4 in a railway corridor 0.000083"
Daily diffusion baseline probability P4 in managed land 0.000083”
Daily diffusion baseline probability Py in a natural area 0.000028°

Environmental Modelling and Software 139 (2021) 105004

Table 3
Selected parameterisation of the YCA human-mediated hitchhiking jump
pathway.

Parameter Value
Dependent on human population density true
Daily jump baseline probability P; 0.000289'
Proportion of jumps allowed into non-populated areas 0.0

Jump distance (minimum, most likely, maximum) (km) BetaPERT (0.5, 10, 75)

! based on the assumption that a cane farm cell with maximal YCA population
(i.e., at carrying capacity), has a 15% chance of diffusing into another cell within
ayear, i.e.,, Pd = 1 — (1-0.15) (1/365).

2 Based on the assumption that a cell with maximal YCA population (i.e., at
carrying capacity), in a railway corridor or on managed land, has a 3% chance of
diffusing into another cell within a year, i.e., Pd = 1 — (1-0.03) (1/365).

3 Based on the assumption that a cell with maximal YCA population (i.e., at
carrying capacity), in a natural area, has a 1% chance of diffusing into another
cell within a year, i.e., Pd = 1 - (1-0.01) (1/365).

2.2.1.4. Spread between non-adjoining cells due to sugar cane farming
activities. An APPDIS jump spread pathway was instantiated to model
the sporadic spread of YCA due to medium-range hitchhiking from sugar
cane farming activities. Jumps were parameterised to only originate
from cells containing sugar cane farms, and only end in cells that had
either sugar cane farms or railway corridors. The ability to define the
baseline daily probability P; (Equation (3)) per land use category allows
heterogeneity in the jumping frequency (Table 2). For example, jumps
between cane farms (brought about by harvesting activities spanning
multiple farms), can be defined differently to jumps from cane farms to
cane railway corridors (brought about by cane rail transportation).
Seasonal variations in cane farming activities were not modelled, i.e.,
the pathway represents average cane jumps over the course of a year.

2.2.1.5. Spread between cells due to human-mediated hitchhiking. An
APPDIS jump spread pathway was instantiated to model the sporadic
spread of YCA via human-mediated hitchhiking (unrelated to cane
farming activities). Jumps were parameterised to only involve cells with
a non-zero human population density (Table 3). Although the model
allows a proportion of jumps to end in non-populated cells (simulating
for example, movements into natural areas), the feature was not enabled
for this case study.

2.2.1.6. Spread between cells due to rafting. An APPDIS jump spread
pathway was instantiated to model the sporadic spread of YCA due to
rafting. Jumps were parameterised to only originate from cells con-
taining watercourses, and only end in lower elevation cells that contain
watercourses (Table 4).

2.2.1.7. General surveillance. An APPDIS general surveillance compo-
nent was instantiated per Table 5.

2.2.1.8. Specific surveillance and treatment. APPDIS delimiting surveil-
lance, treatment, and post-treatment components were instantiated per
Table 6.

Table 2
Selected parameterisation of the YCA sugar cane farming jump pathway.
Parameter Value
Dependent on land use true
Daily jump baseline probability P; onto a cane farm 0.000289'
Daily jump baseline probability P; into a railway corridor 0.000289"

Jump distance (minimum, most likely, maximum) (km) BetaPERT? (0.5, 2, 20)

! based on the assumption that a cell with maximal YCA population (i.e., is at
carrying capacity), has a 10% chance of a sugar-cane farming hitchhiking jump
into another cell within a year, i.e., Pj = 1 - (1-0.1) (1/36%)

2 Vose (2008).

! based on the assumption that a cell with maximal YCA population (i.e., is at
carrying capacity), and maximal human population (i.e., normalised human
population density of 1.0), has a 30% chance of a human-mediated hitchhiking
jump into another cell within a year, ie., P; = 1 - (1-0.3) (/**®

Table 4
Selected parameterisation of the YCA sugar cane farming jump pathway.
Parameter Value
Dependent on land use false
Dependent on human population density false
Dependent on temperature false
Dependent on gradient true
Dependent on watercourses true

0.000141!
BetaPERT (0.5, 0.5, 5)

Daily jump baseline probability P;
Jump distance (minimum, most likely, maximum) (km)

Seasonal variations in rafting likelihood were not modelled, i.e., the pathway
represents average rafting jumps over the course of a year.

1Based on the assumption that a cell with maximal YCA population (i.e., is at
carrying capacity), has a 5% chance of rafting jump into another cell within a
year, ie., P; = 1 - (1-0.05) (**%

Table 5

YCA general surveillance parameterisation.
Parameter Value
General surveillance mode Passive
Observer sensitivity S. in managed areas 0.60
Observer sensitivity Se in unmanaged areas 0.25

Table 6
YCA specific surveillance and treatment parameterisation.

Parameter Delimiting Treatment Post-treatment
surveillance surveillance
Mode Moore Spot Spot
Visit duration (per 21 days 7 days 21 days
cell)
Trap spacing 10 m N/A 10 m
Sensitivity Se 0.99 N/A 0.99
Specificity S, 1.00 N/A 1.00
Effectiveness N/A 0.8 to 0.95 N/A
Visit cost A$10 per trap A$1700 per A$10 per trap
cell
Interval between 90 days 28 days 180 days
visits
Minimum number of 8 6 4

visits

2.2.1.9. Resources. The APPDIS resources component was set to Un-
limited i.e., surveillance and treatment activities were not resource
constrained.

2.2.2. Scenario 1 - uncontrolled spread

The established YCA population (Fig. 5) was allowed to spread
without surveillance or treatment for 30 years and the emergent rates
and extent of spread recorded. The scenario was repeated 50 times.

2.2.3. Scenario 2 - sensitivity of delimiting surveillance trap spacing
The established YCA population (Fig. 5) was allowed to spread in
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conjunction with surveillance and treatment programs. The delimiting
surveillance trap spacing parameter (Table 6) was systematically varied
between 2 and 100 m, while the post-treatment surveillance trap spacing
was held constant at 10 m. 500 iterations of the scenario were run for
each trap spacing. The maximum length of a scenario was limited to 15
years (5475 days).

2.2.4. Scenario 3 - sensitivity of post-treatment surveillance trap spacing

The established YCA population (Fig. 5) was allowed to spread in
conjunction with surveillance and treatment programs. The post-
treatment surveillance trap spacing parameter (Table 6) was systemat-
ically varied between 2 and 100 m, while the delimiting surveillance
trap spacing was held constant at 10 m. 500 iterations of the scenario
were run for each trap spacing. The maximum length of a scenario was
limited to 15 years (5475 days).

3. Results
3.1. Scenario 1 results - uncontrolled spread

Table 7 provides a summary of uncontrolled YCA spread over 30
years.

Convergence estimates the percentage standard error E of the sample
mean with 95% confidence for a given number of iterations (Equation
(7)) (Driels and Shin, 2004).

L, 100z.s,
-

where

(Eqn. 7)

E = percentage standard error of the sample mean
7. = confidence coefficient (1.96 = 95%)

Sy = sample standard deviation

X = sample mean

n = number of runs

Fig. 6 provides a snippet of the yearly spread report for the case
study. The model outputs the population density for each active cell at
the end of every year, for each simulation run.

The model creates a pest distribution risk map that represents how
often a cell was infested across all iterations of a particular scenario.
Fig. 7 presents a colour-coding of cells in the study area where the most
frequently infested cells are encoded in red and the least frequently
infested cells in yellow.

3.2. Scenario 2 results — sensitivity of delimiting surveillance trap spacing

Table 8 and Figs. 8 and 9 summarise the effect of delimiting

Table 7
Simulation results for 50 iterations of 30 years of uncontrolled yellow crazy ant
spread.

Model outcome Value

310 million — 124 billion
154 cells (1540 ha) — 6936 cells (69,360 ha)
2.90%

105 per year

119 m per year

132 m per year

90 m per year

68 m per year

41 jumps per year

16 jumps per year

13 jumps per year

YCA population increase’

Initial infestation area increase *
Final infestation area convergence”
Number of diffusion events’
Managed land diffusion rate’
Cane farm diffusion rate’

Cane railway diffusion rate’
Natural area diffusion rate’
Cane-related jump rate’
Human-mediated jump rate'
Rafting jump rate'

! averaged over 50 runs.

2 percentage standard error of the sample mean (95% confidence).
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surveillance trap spacing on the average cost and effectiveness of con-
trol/eradication.

3.3. Scenario 3 results - sensitivity of post-outbreak surveillance trap
spacing

Table 9 and Figs. 10 and 11 summarise the effect of post-treatment
surveillance trap spacing on the average cost and effectiveness of con-
trol/eradication.

4. Discussion
4.1. Uncontrolled spread

The average YCA diffusion rate over a 30-year period ranged from
68 m/year in natural areas up to 132 m/year in cane farming areas. This
is broadly in line with reported budding distances of 125 m/year on
average (range 37-402) (Haines and Haines, 1978a), and up to 182 m
per year (Abbott, 2006). Note that cells may have multiple land uses (e.
g. cane + managed, railway + managed) and each cell diffuses based on
its highest risk land use. This can artificially boost the diffusion rate for
the lower risk land use of the cell (e.g. a managed cell with cane fields
contributes correctly to the overall cane diffusion rate but
over-contributes to the overall managed land diffusion rate).

Dispersion via winged flight of queens (fission) was not explicitly
modelled as it is unclear whether this is an important means of dispersal
for YCA (Rao et al., 1991; Haines et al., 1994; O’Dowd et al., 1999;
Abbott et al., 2014; Hoffmann, 2014). It would have been possible, data
permitting, to include a fission jump pathway as the model supports
multiple concurrent jump spread pathways.

Longer range sporadic spread of YCA via hitchhiking is more un-
predictable and harder to quantify than steady diffusive spread. The
probability of spread via human-mediated hitchhiking is influenced by
an infested cell’s pest population density and human population density,
however, the frequency and distance of such jumps is largely driven by
expert opinion and inference from unexpected satellite colonies. For
example, an unexpected appearance of YCA in Russett Park, Queensland
(30 km from the nearest known infestation near Cairns, Queensland),
was attributed to hitchhiking via the transportation of landscaping
materials.

As illustrated in Fig. 7, one of the outputs of APPDIS is a risk map of
spread — driven by the number of times a cell is infested over a series of
scenario runs. The land uses of the resultant infested cells can be ana-
lysed to provide an estimation of the potential long-term impact on
agricultural, residential, and environmentally sensitive areas. This case
study strongly suggests that 30 years of uncontrolled spread of YCA
would lead to significant incursions into the Wet Tropics World Heritage
Area.

The simulation produced very good convergence (2.90%) of the
mean number of infested cells after 50 iterations. This implies there is
95% confidence of only 2.90% standard error in the distribution of the
sample mean.

4.2. Sensitivity of surveillance trap spacing

The cost of control was largely independent of delimiting surveil-
lance trap spacings greater than 20 m, but rose steeply for trap spacings
less than 20 m (Fig. 8). The cost of control was weakly dependent on
post-treatment surveillance trap spacings greater than 10 m, and rose
steeply for trap spacings less than 10 m (Fig. 10).

The effectiveness of control (measured by population reduction and
incursion duration), was far more sensitive to post-treatment surveil-
lance trap spacing than delimiting surveillance trap spacing. Figs. 8 and
9 shows how the YCA population was reduced by 99% within 15 years
for all delimiting surveillance trap spacings. In contrast, only post-
treatment surveillance trap spacings between 2 and 10 m resulted in a
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run sim_day calendar _date cell ID latitude longitude
1 3650 Sun 29 Nov 2026 38667 -16.7785 145.65851
1 3650 Sun 29 Nov 2026 40417 -16.793499 145.6135
1 3650 Sun 29 Nov 2026 40762 -16.796501 145.58951
1 3650 @ Sun 29 Nov 2026 40763 -16.796501 145.5925
1 3650 Sun 29 Nov 2026 40764 -16.796501 145.59549
1 3650 Sun 29 Nov 2026 40765 -16.796501 145.59851
1 3650  Sun 29 Nov 2026 40768 -16.796501 145.6075
1 3650  Sun 29 Nov 2026 40769 -16.796501 145.6105
1 3650 Sun 29 Nov 2026 41117 -16.7995 145.59549
1 3650 Sun 29 Nov 2026 41118 -16.7995 145.59851
1 3650 @ Sun 29 Nov 2026 41119 -16.7995 145.6015
1 3650  Sun 29 Nov 2026 41470 -16.802502 145.59549
1 3650 @ Sun 29 Nov 2026 41471 -16.802502 145.59851
1 3650 Sun 29 Nov 2026 41472 -16.802502 145.6015
1 3650 Sun 29 Nov 2026 41474 -16.802502 145.6075
1 3650 Sun 29 Nov 2026 41475 -16.802502 145.6105
1 3650  Sun 29 Nov 2026 41481 -16.802502 145.62851
1 3650 Sun 29 Nov 2026 41816 -16.8055 145.5745
1 3650 Sun 29 Nov 2026 41822 -16.8055 145.5925
1 3650 Sun 29 Nov 2026 41823 -16.8055 145.59549
1 3650 Sun 29 Nov 2026 41824 -16.8055 145.59851
B 3650 Sun 29 Nov 2026 41826 -16.8055 145.60449
1 3650  Sun 29 Nov 2026 42169 -16.808498 145.5745
1 3650 Sun 29 Nov 2026 42176 -16.808498 145.59549
1 3650 Sun 29 Nov 2026 44615 -16.829498 145.49951
1 3650 @ Sun 29 Nov 2026 46762 -16.8475 145.5865
1 3650  Sun 29 Nov 2026 46775 -16.8475 145.62549
1 3650 Sun 29 Nov 2026 47128 -16.8505 145.62549
1 3650 Sun 29 Nov 2026 47469 -16.8535 145.58951
1 3650 Sun 29 Nov 2026 49568 -16.8715 145.5325
1 3650 | Sun 29 Nov 2026 51405 -16.886501 145.7485
1 3650 Sun 29 Nov 2026 51709 -16.8895 145.6015
1 3650 Sun 29 Nov 2026 52062 -16.8925 145.6015
1 3650 Sun 29 Nov 2026 52148 -16.8925 145.8595
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infest day pathway Source ID  pest density population
3203 hitchhiking 67996 0.0819 1637160
3242 budding 40769 0.0325 650698
3147 budding 40763 0.2655 5310817
1777 budding 41117 1 20000000
0 seed 0 1 20000000
2508 budding 41117 1 19999994
3477 budding 40769 0.0001 1889
1559 rafting 41472 2 | 20000000
0 seed 0 1 20000000
0 seed 0 1 20000000
3148 budding 40765 0.2607 5213876
0 seed 0 | 20000000
0 seed 0 i | 20000000
318 budding 41118 i | 20000000
2213 rafting 41472 1 20000000
185 rafting 41824 1 20000000
3273 rafting 41826 0.0153 305133
2293 hitchhiking 68702 1 20000000
2442 budding 41823 1 19999999
178 budding 41824 1 20000000
0 seed 0 1 20000000
2661 rafting 41823 1 19999707
3398 budding 41816 0.0007 13605
1233 budding 41824 | 20000000
2465 hitchhiking 65867 1 19999998
2804 hitchhiking 63756 0.9995 19989563
1615 hitchhiking 68702 1 20000000
2579 budding 46775 i | 19999962
2465 hitchhiking 60933 h | 19999998
3606 hitchhiking 60225 0 75
1448 cane jump 65877 1 20000000
2739 hitchhiking 66575 0.9999 19997944
3503 budding 51709 0 986
2038 hitchhiking 41470 1 20000000

Fig. 6. Yellow crazy ant simulation spread report (snippet only).

99% population reduction within 15 years (Figs. 10 and 11). The
effectiveness of control decreased markedly as post-treatment surveil-
lance trap spacing increased, with a trap spacing of 100 m yielding no
net population reduction after 15 years. This suggests that the effec-
tiveness of post-treatment surveillance is a vital aspect of pest eradica-
tion. Fig. 10 indicates that a post-treatment surveillance trap spacing of
18 m minimised the cost of control at approximately A$23.5M and
resulted in an average 95% population reduction. However, to achieve
an average 99.99% population reduction, the required 2-m post-
treatment surveillance trap spacing would, however, incur a much
higher cost of approximately A$163M.

The decrease in control effectiveness with increased post-treatment
surveillance trap spacing is also reflected by the average model run-
time per iteration. In scenario 2 where the post-delimiting surveillance
trap spacing was held steady at 10 m while the delimiting surveillance
trap spacing was varied, the average model runtime (per scenario iter-
ation) was reasonably stable (average = 60.50 s, standard deviation =
9.68) (Table 8). In scenario 3 where the delimiting surveillance trap
spacing was held steady at 10 m while the post-outbreak surveillance
trap spacing was varied, the average model runtime (per scenario iter-
ation) was strongly dependent on trap spacing (ranging from 28.04 to
141.75 s). This is due to the additional treatment and post-treatment
surveillance activities (and hence simulation processing) required
when the surveillance strategy is less effective (reflected by higher false
negative results (Table 9)).

The high sensitivity of control cost-effectiveness to post-treatment
surveillance trap spacing is perhaps because post-treatment surveil-
lance is typically conducted in cells with very small pest densities. As

11

shown in Fig. 3, the model’s implementation of specific surveillance is
highly sensitive to trap spacing at low pest population densities. An
incorrect determination of pest absence in a treated cell (after 4 suc-
cessive false negative results), leads to cell populations that will recover
over time. In the absence of an early detection surveillance system, the
subsequent detection of a residual population relies on general surveil-
lance. The probability of a general surveillance detection is, however,
greatly reduced at low pest and human population densities (Fig. 2).

The simulations produced very good convergence for the mean total
cost of control (<1.7%). This implies 95% confidence that there is at
most 1.7% standard error in the distribution of the sample mean, and
that 500 iterations of the scenarios were sufficient.

4.3. Advantages and limitations of the APPDIS modelling approach

Decision support tools that represent the spread of a pest in an
environment range from simple aggregative mathematical models to
complex pest-specific spatial simulations. Aggregative mathematical
models generally do not take host and environmental heterogeneity into
account, but are concise, easy to parameterise, scalable, computation-
ally efficient, and may be readily extensible to other pests. They can be
very useful for the fast prototyping of incursion dynamics, especially
when data is scarce or unreliable. Detailed spatially explicit and pest-
specific simulations can capture environmental and host heterogene-
ities, but are data dependent, can be complicated to construct and
parameterise, may not scale well computationally, and may not be
readily extensible to other pests.

The APPDIS modelling framework attempts to find a pragmatic
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Fig. 7. Projected yellow crazy ant distribution after 30 years of uncontrolled spread.
Table 8
Average effect of delimiting surveillance trap spacing on control effectiveness and cost.
Trap Outbreak Delimiting Treatment cost ~ Post-treatment Total cost of Delimiting Reduction in Average model
spacing length (days)  surveillance cost (A (A$ million) surveillance cost (A control surveillance false infested cells runtime per
(metres) $ million) $ million) convergence negatives iteration (secs)
2 4113 504.64 0.27 6.34 0.50% 0.58 99.25% 64.25
5 4182 80.54 0.26 6.35 0.27% 7.59 99.50% 45.98
8 4227 31.65 0.27 6.46 0.45% 17.90 99.14% 44.2
10 4281 20.31 0.27 6.51 0.31% 23.28 99.16% 54.73
15 4255 9.05 0.27 6.68 0.26% 34.59 99.20% 56.23
20 4354 5.10 0.27 6.79 0.26% 45.29 99.12% 51.91
30 4431 2.28 0.27 6.99 0.24% 61.73 99.07% 52.75
40 4469 1.28 0.27 7.09 0.23% 75.37 98.99% 58.46
50 4471 0.82 0.27 7.14 0.24% 86.22 99.13% 72.05
60 4490 0.57 0.27 7.21 0.26% 95.89 98.84% 66.25
70 4455 0.41 0.27 7.21 0.24% 103.26 99.13% 71.67
80 4474 0.31 0.27 7.22 0.26% 110.18 98.85% 70.91
90 4508 0.25 0.27 7.22 0.25% 115.87 99.03% 68.00
100 4434 0.19 0.27 7.22 0.24% 120.49 99.16% 69.59
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Fig. 8. Effect of delimiting surveillance trap spacing on incursion duration and
control cost.
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Fig. 9. Effect of delimiting surveillance trap spacing on control effectiveness
and cost.

middle ground between the biological and ecological fidelity of a com-
plex pest-specific spatial model, and the extensibility of a generalised
mathematical model. APPDIS is flexible in that a user can configure
either simple or complex spread models. In studies where field data is
scarce or unreliable, a simple mathematical spread model is obtained by
disabling the environmental data layers and configuring an aggregative
diffusion kernel based on predicted spread rates. A complex spread
model can be achieved by enabling environmental data layers and

Table 9
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configuring individual spread pathways that consider heterogeneities in
elevation, temperature, wind speed, vegetation, land use, human pop-
ulation density, etc.

Once a model is spreading a pest in a way that is congruent with
available field data and expert opinion, a decision support tool should
allow useful experimentation with surveillance and control strategies. A
further design tension exists between implementing detailed pest spe-
cific detection/control options that may not be readily extensible to

ha
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Fig. 10. Effect of post-treatment surveillance trap spacing on incursion dura-
tion and control cost.

100

Population reduction (%)

0 20

40
Trap spacing (metres)

60 80 100

Fig. 11. Effect of post-treatment surveillance trap spacing on control effec-
tiveness and cost.

Average effect of post-treatment surveillance trap spacing on control effectiveness and cost.

Trap Outbreak Delimiting Treatment cost ~ Post-treatment Total cost of Post-treatment Reduction in Average model
spacing length (days)  surveillance cost (A (A$ million) surveillance cost (A control surveillance false infested cells runtime per
(metres) $ million) $ million) convergence negatives iteration (secs)
2 2049 20.07 0.26 143.39 0.10% 0.05 99.99% 28.04

5 2796 20.10 0.26 23.57 0.14% 10.29 99.90% 34.37

8 3611 20.18 0.26 9.74 0.21% 31.56 99.64% 40.74

10 4233 20.27 0.27 6.51 0.25% 48.59 99.31% 49.00

15 5262 20.73 0.27 3.24 0.46% 97.29 96.95% 60.69

20 5470 21.36 0.27 2.03 0.60% 151.01 93.78% 58.94

30 5475 22.87 0.28 1.09 0.73% 269.86 83.12% 74.41

40 5475 24.37 0.29 0.69 0.86% 378.37 70.68% 94.89

50 5475 26.72 0.31 0.49 0.92% 481.37 55.37% 109.78

60 5475 28.30 0.32 0.36 1.07% 566.74 43.54% 117.59

70 5475 29.99 0.33 0.28 1.33% 650.54 32.11% 123.97

80 5475 32.17 0.34 0.22 1.51% 718.66 20.69% 131.17

90 5475 33.92 0.36 0.19 1.66% 780.78 11.66% 136.57

100 5475 35.36 0.37 0.15 1.48% 836.07 1.87% 141.75
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other pests and/or jurisdictions, and implementing generalised detec-
tion/control options that may not be detailed enough for the pest under
study. Again, APPDIS attempts to find a pragmatic middle ground by
providing detection/control options that are detailed enough to be
useful yet abstract enough to extend to a range of pests. Surveillance and
treatment regimes are configurable by the user in generalised terms such
as duration, cost, resource requirements, efficacy, sensitivity, and
specificity. As the underlying pest spread mechanisms are stochastic, a
control policy can be trialed against a distribution of plausible in-
cursions. In this way, despite inherent uncertainty in how an exotic pest
population may spread, confidence can be gained as to the likelihood of
a particular policy to achieve the desired control/eradication outcome.

Configuring an APPDIS model for a pest (or pest group) requires
personnel versed in pest ecology, plant health policy, and the APPDIS
modelling platform (including the assembly of supporting data,
parameterisation, designing and running incursion scenarios, and sta-
tistical interpretation of simulation results). The configuration effort
required when employing disaggregated (data-driven) spread pathways
is considerably more than that required for aggregative mathematical
pathways. An advantage of a disaggregated approach to modelling
spread (by simulating each spread pathway separately), is that control
measures can be applied to specific spread pathways. For example,
consider a pest that spreads through a windborne pathway and a market-
driven pathway. With a disaggregated modelling approach, it is easy to
test the effect of movement restrictions on the market-driven pathway
whilst still allowing the airborne pathway to spread the pest. This is
more difficult when all spread pathways are aggregated into a single
mathematical spread mechanism.

A disadvantage of grid-based modelling approaches is that point-
based agricultural entities such as orchards, nurseries and markets are
not represented. It would be possible to extend APPDIS to include point-
based entities and directed spread pathways (as is the case with the
AADIS framework), however this would require further development of
the framework and consultation with domain experts to ensure that
entities and networks are captured in an abstract way that extends to as
many pest species as possible.

Whilst models can assist with preparedness and planning for in-
cursions and in some cases response, they can suffer silently from poor
assumptions, sub-standard data, inadequate validation, and improper
use. Flawed models have the potential to mislead rather than inform,
particularly when modelling outputs are detailed and appear definitive.
APPDIS is primarily a data-driven model and as such, relies heavily on
the quality of the underlying data and parameterisation. Each instanti-
ation of APPDIS for a new pest species (or pest species group), will
require a separate validation process that fosters user trust in the model
assumptions, data, parameterisation, and capabilities. APPDIS models
are best suited to relative comparisons between control and resourcing
strategies, rather than predicting incursion outcomes in absolute terms.

4.4. Conclusions

APPDIS is a general-purpose plant and environmental pest modelling
framework that is extensible (not tied to a specific pest), scalable
(operable regionally and nationally), and flexible (offering simple
equation-based spread pathways or complex data-driven pathways that
capture heterogeneity in the host environment). APPDIS allows relative
comparisons of strategies for early detection surveillance, delimiting
surveillance, treatment, and post-treatment surveillance, with respect to
efficacy, resource usage and cost. The case study has demonstrated the
potential for APPDIS to assist with decision support for both plant pests
and environmental pests. Importantly, APPDIS is extensible to a range of
pests via user configurable parameters (i.e., without the need for spe-
cialised mathematical reformulation and/or computer programming).
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Executive Summary

Australia operates one of the most comprehensive biosecurity systems in the world. However, due
to the system’s size and complexity, it is unclear exactly how much monetary 'value'it generates and
where that value is generated within the system. Without a clear understanding of the net benefits
obtained from the existing investment in biosecurity activities it is difficult to determine the extent
to which the system is achieving its desired objectives (i.e., its ‘health’) and also whether there is
scope to increase either the value or health of the system by altering the allocation of resources.

Past attempts to value the biosecurity system have been based on ad-hoc and/or qualitative
statements of overall benefits or limited to specific major pests or diseases, such as an estimate of
the consequences of a foot and mouth disease outbreak in Australia. Consequently, where benefit
estimates do exist, they have typically been calculated using incompatible measures of value;
inconsistent or incomplete monetisation of impacts; contradictory assumptions or counterfactuals;
and/or over different temporal or spatial scales. To the best of our knowledge, no one has ever
successfully completed an economic evaluation of an entire biosecurity system.

Given the scale of the task of estimating value at the system level, a staged approach was required.

- Phase One (Dodd et al., 2017) delivered a comprehensive review of the biosecurity
economics literature, a detailed description of Australia’s biosecurity system, four small case
studies highlighting critical issues (knowledge gaps) identified by the project team, and an
overarching framework for accurately estimating the value of Australia’s biosecurity system.

- Phase Two (Stoeckl et al., 2018) delivered a comprehensive review of the non-market
valuation literature relevant to biosecurity, developed a detailed framework for extending
DAWE's existing consequence measures to include non-market values, including a method
for properly aggregating measures of value up to the system scale, and prepared two
detailed case studies demonstrating proof of concept for a whole-of-system approach.

- Phase Three (outlined here) implemented our novel whole-of-system approach to valuation.
We first compiled estimates of the annual flow of benefits (both market and non-market)
arising from sixteen different assets vulnerable to biosecurity hazards, and thus protected by
the Australian biosecurity system — including the distribution of those assets across space.
We then developed a bespoke, spatially explicit, bio-economic simulation model capable of
simultaneously modelling the arrival, spread and impact of 40 functional groups of species
on those sixteen assets, over time. Finally, we completed 50,000 iterations of the model
with the biosecurity system ‘on’ for 50 years, and another 50,000 with the system ‘off’, to
estimate the future damages that may be avoided due to the operation of Australia’s
biosecurity system (i.e., its benefits), and subtracted from those the government’s forecast
expenditure (i.e., its costs), in order to determine its Net Present Value (AS).

The total flow of benefits arising from assets vulnerable to biosecurity hazards was calculated to be
AS$251.52 billion per annum, or AS5.696 trillion over 50 years (discounted at 3-5%). In the absence
of a biosecurity system we forecast that approximately AS671.94 billion in damages attributable to
newly introduced pests and diseases would be incurred by these assets over the next 50 years.
Instead, we estimate that these damages would decline by approximately A$325.26 billion (the
benefit) to AS346.67 billion in response to the system’s operation (at a cost of A$10.45 billion).

Thus, we estimate the Net Present Value of Australia’s Biosecurity System to be A$314 billion (95%
interval: 156.47b - 466.86b) at an average return on investment of 30:1 (95% interval: 15-45:1).
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As the first estimates of their kind it is difficult to properly contextualise our results other than to say
that they appear plausible given the existing evidence. We further recognise the many necessary
assumptions and limitations in our analysis and, as such, view our estimates as the beginning of a
discussion about system valuation rather than its end. Nevertheless, it is clear from our analysis that
the continued operation of Australia’s biosecurity system over the next fifty years will yield large
positive benefits for Australians.

Vi



Red Imported Fire Ants in Australia
Submission 10 - Supplementary Submission

1 Introduction

1.1 Biosecurity in Australia

Australia has a comparative advantage relative to many developed countries due to its diverse
geography, extensive natural resources and the absence of most of the world’s major pests and
diseases. This allows producers to achieve higher yields with lower production costs, and to receive
higher prices for goods in premium international markets. Australia also has a mega-diverse natural
environment that provides significant ‘ecosystem services’ including clean air and water, pollination
and amenity (Daily, 1997; Millennium Ecosystem Assessment, 2005; Pejchar & Mooney, 2009). This
biophysical environment helps to facilitate Australia’s strong economy and high standard of living.

Whilst Australia’s island geography has long acted as a natural barrier to the movement of pests and
diseases (Kloot, 1984; McLoughlin, 2001), globalisation is increasing the rates of movement of both
people and goods into Australia from areas where these pests and diseases are more widespread
(Ricciardi, 2007; Hulme, 2009). As a consequence, the frequency of pest and disease incursions into
Australia continues to increase for most taxonomic groups (Dodd et al., 2015; Seebens et al., 2017).
The stated goal of Australia’s biosecurity system is to reduce the likelihood of these pest and disease
incursions and their adverse consequences on human, animal and plant health, the environment and
the economy (Nairn et al., 1996; Beale et al., 2008; COAG, 2012). But what is a biosecurity ‘system’?

Remarkably, the concept of a biosecurity system is only vaguely defined in the literature —academic
and government. Government agencies typically describe biosecurity as a continuum of measures
categorised based on where they operate: offshore [pre-border], border and onshore [post-border]
(COAG, 2012; Craik et al., 2017). Conversely, the academic literature tends to describe biosecurity as
a continuum of measures categorised based on when the action is occurring relative the generalised
invasion curve: prevention, eradication, containment and asset-based protection (Rout et al., 2011;
Robertson et al., 2020). Though, neither approach clearly articulates what specific actions make up
these measures nor how they are organised into a system of controls designed to minimise impacts.

To that end, during year one of our project, we developed a logic model (Figure 1) that describes
how Australia’s biosecurity system converts inputs (via activities) into outcomes (Dodd et al., 2017).
Our view is that a biosecurity system encompasses all of the activities undertaken to minimise the
impacts of introduced pests and diseases on the community, the economy and the environment -
regardless of whether they are undertaken by government, industry or the community. Drawing on
the approach taken by New Zealand for their Biosecurity 2025 direction statement (MPI, 2016), our
model blends the two normative frameworks (above), and supplements them with the supporting
(e.g., risk analysis and surveillance) and enabling (e.g., legislation and engagement) activities that
collectively ensure on-ground management is delivered efficiently and effectively.

For the purposes of this analysis, however, we limit our scope to the activities delivered by the
Biosecurity and Compliance Group of the Australian Government Department of Agriculture, Water,
and the Environment (DAWE). Thus, our analysis considers the costs and benefits of the biosecurity
activities undertaken by the Australian government outside Australia, at the Australian border, and
immediately within it (where the activity is paid for by DAWE). The additional costs and benefits
arising from activities delivered by the States and Territories within the border were not modelled.

Our original detailed description of Australia’s Biosecurity System, including supporting text, can be
found in Dodd et al. (2017) and an updated version found in Schneider and Arndt (2020).

1
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Figure 1: Australia's biosecurity system logic (Dodd et al., 2017; updated in Schneider & Arndt, 2020).
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1.2 Estimating the value of biosecurity systems

A wide range of methods have been used in the scientific literature to infer the economic benefits
arising from biosecurity activities. Based on the >300 economic analyses identified in our literature
review, several general observations can be made. Typically, these analyses fall into three broad
categories: consequence analysis, cost-benefit analysis and optimisation. However, only the latter
two, cost-benefit analysis and optimisation, provide measures of ‘value’, and the overwhelming
majority of these studies focus on either a single species or a single intervention. None of the
studies reviewed analysed a realistic biosecurity system which protects a diverse range of assets,
from numerous potential hazards using multiple interventions (although see Hafi et al., 2015).

Estimating the value of a system is much more complicated than simply adding together the values
of its parts. To illustrate why this is the case, we will work through a selection of issues arising from
a simple example based on a well understood hazard — foot and mouth disease (FMD). In 2013, the
Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES) estimated that the
economic impact [consequence] of a large FMD outbreak in Australia would be $52b (Buetre et al.,
2013). However, this doesn’t imply that the value generated by preventing an FMD outbreak is
$52b, only what the consequences would be should an outbreak occur.

Instead, the value of a system is usually determined by the reduction in both the likelihood of an
outbreak occurring and the consequences of an outbreak when one does occur (i.e., the change in
‘expected value’), minus the costs of implementing the system. This is illustrated in Table 1.

Table 1: A stylised approach for estimating the expected (annual) net present value of a system
aimed at preventing, detecting and eradicating foot and mouth disease.

No Biosecurity System (the ‘counterfactual’)

Annual likelihood: 0.05  (1:20 year return frequency)*
Consequence: -$100,000,000,000*
Expected Value (loss): -$5,000,000,000

Biosecurity System (the ‘status quo’)

Annual likelihood: 0.01  (1:100 years)*

Consequence: -$52,000,000,000
Expected Value (loss): -$520,000,000
Expected Benefit (avoided loss): $4,480,000,000
Biosecurity System Cost: $100,000,000*
Expected Net Present Value: $4,380,000,000

* Indicates hypothetical estimates included for the purposes of illustration.
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What becomes clear, when presenting the information in this way, is the importance of correctly
describing what would happen in the absence of the biosecurity system as the reference point (the
‘counterfactual’) from which we estimate the system’s net present value. Since the counterfactual
cannot be observed, it must be estimated, and no such analysis has been undertaken for Australia.
We also don’t know the relative likelihoods of the two outbreak scenarios (small and large) modelled
by Buetre et al. (2013). Calculating an expected value requires an understanding of the distribution
of possible outcomes and their relative likelihoods in order to identify the most likely scenario,
however, what Buetre et al. (2013) report are essentially realistic best and worst-case scenarios.

Each of these estimates are also based on an assumption of ceteris paribus; all things remaining as
they are. Thatis, when the consequences of an FMD outbreak are estimated, it is assumed that no
other pest or disease outbreaks will occur. Whilst this may be a reasonable assumption in the status
quo scenario, in the absence of a biosecurity system (the counterfactual) outbreaks of several pests
or diseases will almost certainly co-occur. As such, the interaction between the outbreaks must be
considered in order to prevent the double counting of damages. In this scenario we are therefore
interested in the additional, rather than absolute, consequence of each additional pest or disease.

Once we start to aggregate the consequences of multiple outbreaks it also becomes critical that the
consequences are estimated using consistent measures and assumptions so that we don’t end up
comparing apples with oranges. For example, the consequences estimated by Buetre et al. (2013)
are measured in terms of impacts on producers (ignoring consumers) whereas the consequences of
many pests and diseases, particularly those affecting the environment, are often measured in terms
of impacts on consumers (ignoring producers) (e.g. Beville et al., 2012; Akter et al., 2015). If the aim
is to aggregate the consequences of these two outbreaks into a single estimate of monetary ‘value’
then impacts on both producers and consumers (e.g. surplus measures) must be estimated for each
pest or disease (Sinden & Griffith, 2007; Soliman et al., 2010; Heikkila, 2011; Epanchin-Niell, 2017).

It is important to emphasise at this point that this example is not intended to suggest that the
analysis of Buetre et al. (2013) is not informative. Rather, it seeks to highlight the significantly higher
information requirements for undertaking a cost-benefit analysis relative to a consequence analysis
and the substantial complexity that arises when trying to aggregate the costs and benefits of
multiple species, assets and interventions (see also Liu et al., 2014; Hafi et al., 2015). If we are to
make a defensible estimate of the value of Australia’s biosecurity system, we will first need to
develop novel ways to cut through this complexity without divorcing ourselves from reality.

Issue 1: Uncertainty and complexity

One of the inescapable realities of biosecurity is extreme uncertainty. However, it is important to
note that not all of this uncertainty is due to a lack of knowledge (also referred to as ‘incertitude’); in
fact, much of our uncertainty is due to randomness (also referred to as ‘variability’) (see Regan et al.,
2002; Burgman, 2005). For example, it could be said that our uncertainty about which species will
arrive, when and where arises predominately from the randomness of the introduction processes
more so than a lack of knowledge about pathways (especially within border inspection agencies,
such as the Department of Agriculture, Water and the Environment (DAWE)). Whilst randomness
can’t be reduced in the same way that knowledge gaps can be closed, advances in high performance
computing now allow us to model this randomness ‘stochastically’ in an epidemiologically authentic
way (Bradhurst et al., 2015; Bradhurst et al., 2016).
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The challenge, then, is how to sensibly model all of the potential biosecurity hazards (i.e., pests and
diseases) mitigated by a biosecurity system. Seebens et al. (2017) recently found that no fewer than
16,926 species have established ‘alien’ populations outside their native range, globally. Modelling
the impacts of all these species is clearly intractable, however, at least two options exist for
simplifying the problem. The first is to recognise that the biosecurity system is designed to mitigate
only the impact of priority (syn. ‘high-risk’) pests and diseases, whilst simultaneously facilitating the
trade of ‘very-low but not zero’ risk commodities in line with an Appropriate Level of Protection
(ALOP; Beale et al., 2008; Craik et al., 2017). One could then argue, based on the findings of
Williamson and Fitter (1996) and Diez et al. (2009), that only a small subset (c. 10%) of the total pool
of species are likely to cause nationally significant impacts in Australia and, thus, warrant modelling.

Of course, this raises the subsequent question of: which species to model? This is where our second
option for simplification arises. Rather than modelling individual species, several recent studies
(e.g., Aukema et al., 2011; Epanchin-Niell et al., 2014) have classified species into ‘functional groups’
according to their mode of action. This type of classification is common in practice where one will
frequently hear the terms ‘fruit flies’, ‘tramp ants’, ‘broadleaf weeds’, etc. The key reason for why
this approach is so common in practice is because the impacts of species within a group and their
management controls are highly similar. Thus, one could also argue that it doesn’t matter exactly
which of the species within a group is modelled, provided it is representative of the larger functional
group (and that the groups are representative of the full suite of hazards). Following such an
approach may allow us to estimate system-level values from as few as 50 pests and diseases.

Issue 2: Individual versus aggregate damages

In the traditional risk management model (as presented in Table 1) the value of a risk control (e.g.,
border inspection for tramp ants) is modelled by subtracting the cost of the intervention from its
expected benefits (i.e., a risk-adjusted net present value; rNPV) (Boardman et al., 2011). Thus, itis
common to see the one-off (often yearly) intervention costs subtracted from the expected benefits
(in our case avoided damages) accrued over an extended time period (e.g., 20 years). However, we
don’t believe that this is appropriate for biosecurity at the system level - for two reasons. Firstly,
biosecurity hazards persist in the environment (unless they are eradicated) so the [additional]
damages that arise from any subsequent incursion of the same species are diminished due to its pre-
existence. Therefore, the realised risk reduction of an intervention will frequently be less valuable
than what is predicted by the net difference between the expected values of the managed and
unmanaged likelihoods and consequences - as was presented earlier in the introduction (Table 1).

Further, by relaxing our assumptions about ceteris paribus (i.e., allowing multiple species to arrive)
we can no longer assume that the consequences of each hazard are independent. Even if we choose
to simplify the problem by classifying pests and diseases into functional groups we still end up with
circumstances where multiple groups (e.g., sap suckers, borers and defoliators) impact upon the
same asset (e.g., forestry). As we have discussed with stakeholders several times throughout this
project, though, you can’t kill the same cow (or tree) twice. Taken together, these two issues mean
that the calculation of aggregate damages (as a precursor to estimating the risk reduction) must
allow for the interaction of outbreaks. This isn’t a trivial undertaking. Relative to the existing
biosecurity risk literature, which comprises mostly single hazard x single asset studies, correctly
addressing this kind of question requires a framework several orders of magnitude more complex
(e.g., a 10 hazard x 5 asset model, allowing interactions, is 10 x 10 x 5 = 500 times more complex).
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Issue 3: Ongoing versus one-off benefits and costs

Complexity also arises in the modelling of species interactions through the need to consider both
space and time explicitly. In their simplest form, biosecurity benefit-cost analyses model impacts
using logistic growth functions and per unit area control costs and/or damages (Soliman et al., 2015;
Epanchin-Niell, 2017). Exactly where a species is, and when, isn’t important in this framework as it
rests on the assumption that space is homogenous. However, in a multi-hazard x multi-asset model
knowing which pests and diseases are present, where, and when is essential for correctly estimating
the aggregate impact of those species (i.e., to avoid double counting). Besides requiring us to move
to a spatially explicit modelling framework, our need to consider many species simultaneously also
mandates the internalisation of the likelihood component of the risk assessment (because we need
to know the likelihood that subsequent outbreaks will occur when estimating consequences),
rendering traditional ‘one-off’ [exogenous] likelihood times consequence methods obsolete.

This change also influences how we incorporate the costs of operating the biosecurity system. If the
consequences of a species are influenced by the arrival of a second species (as we have argued
above) then the consequences of the first depend on the arrival (and spread) rate of the second. In
the traditional model, the expected value (likelihood x consequence) is equal to the average per
annum damage from a hazard (in the long run). Therefore, one can easily find examples where the
cost of a risk reduction measure is expressed as a one-off, yearly, amount. The problem with this, as
we have illustrated above, is that the arrival (and spread) rate of a subsequent species is dependent
on the amount of investment in risk reduction. That is, consequence estimates are conditional on
continued expenditure. As such, when estimating the value of an intervention targeting multiple
species, one must calculate costs and benefits over the same time horizon.

Our proposal is to flip the existing hazard focussed approach on its head and instead focus on assets.
Rather than estimating the long run impact of a set of hazards by summing their individual impacts,
we propose that system level impacts would be best derived by first estimating the flow of benefits
arising from assets protected by the system and then estimating the decline in the value of those
assets that would occur should species arrive, spread and impact at their forecast rates. Whilst such
an approach is a significant departure from the traditional risk analysis methods, we believe that this
approach is the only one that adequately addresses the theoretical considerations that we outlined
above. It also puts assets (e.g., agriculture, environment, etc.) at the heart of our analysis — which is
important — because the sole purpose of the system is to protect these assets. It is worth reiterating
that we are not aware of any existing biosecurity models capable of such an analysis.

1.3 Aims and organisation of this report

This report summarises the key results arising from the Centre of Excellence for Biosecurity Risk
Analysis (CEBRA) project 170713 — Value of Australia’s biosecurity system. The primary focus of this
report is to outline the methodology of our final bioeconomic analysis and to present its key findings
in a readily digestible format. Consequently, all of the details relating to our preliminary analyses
(i.e., our system definition, literature reviews, methodological development and rationale, proofs-of-
concept, data gathering, etc.) are omitted here for clarity. For further details we direct the reader to
Dodd et al. (2017), Stoeckl et al. (2018) and Stoeckl et al. (2020).
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2 Methods

We first compiled estimates of the annual flow of benefits (both market and non-market) arising
from sixteen different assets vulnerable to biosecurity hazards, and thus, protected by the Australian
biosecurity system — specifically, the distribution of those assets across space. We then developed a
bespoke, spatially explicit, bio-economic simulation model capable of simultaneously modelling the
arrival, spread and impact of 40 functional groups of species on those sixteen assets, over time.
Finally, we completed 50,000 iterations of the model with the biosecurity system ‘on’ for 50 years,
and another 50,000 with the system ‘off’, to estimate the future damages that may be avoided due
to the operation of Australia’s biosecurity system (i.e., its benefits), and subtracted from those the

government’s forecast expenditure (i.e., its costs), in order to determine its Net Present Value.

2.1 Data Collection

Asset values and locations

Our estimates of the spatial distribution of asset values builds on the work outlined in Stoeckl et al.

(2020). To briefly re-cap, benefit transfer techniques were used to estimate the annual flow of

benefits arising from sixteen sub-classes of assets for each of Australia’s 56 Natural Resource

Management (NRM) regions. A breakdown of the asset classes, which extend on the well-known
Common International Classification of Ecosystem Services (CICES) framework (Haines-Young &
Potschin, 2012), is included in Table 2.

Table 2: Asset classes used in the analysis.

Natural Provisioning Portfolio Industries Agriculture
Forestry
Indigenous Subsistence Subsistence
Water for Consumption Water
Regulating Erosion Control Erosion Control
Flood Control Flood Control
Genepool / Nursery Genepool
Carbon Sequestration Carbon Sequestration
Mediation of Soil / Air Toxin Mediation
Cultural Residents — Use Recreation / Aesthetics
Residents — Non-Use Existence / Bequest
Non-Residents - Use Tourism
Indigenous — Non-Use Indigenous
Companion Animals Pets (Cats, Dogs, etc) Domestic Animals
Horses (non-racing) Recreational Horses
Physical Infrastructure Dwellings / Utilities Infrastructure
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For those assets traded in markets (such as agricultural commodities, forestry products and
infrastructure) the annual flow of benefits, per region, was sourced directly from Australian Bureau
of Statistics datasets (ABS, 2017c, d, 2018a). For those assets not traded in markets (such as erosion
control, toxin mediation, tourism, etc.), the annual flows of benefits were estimated using benefit
transfer functions fitted to data from pre-existing studies of ecosystem service values housed within
The Economics of Ecosystems and Biodiversity (TEEB) database (Van der Ploeg & De Groot, 2010).
Expenditure on companion animals was sourced from Animal Medicines Australia (2016) for pets
and Gordon (2001), O’Sullivan (2012) and Macleay (2018) for horses. For a fuller description of our
asset valuation see Stoeckl et al. (2020).

To allocate these values across space we first constructed a series of 2500m x 2500m raster grids for
each of the factors known to influence asset value (Table 3). Each spatial dataset was projected,
rasterised, aggregated and resampled (as required) to ensure a common resolution and extent. The
data were projected using the Australian Albers (equal area conic) coordinate system (EPSG:3577).
Categorical datasets were aggregated by mode and resampled using nearest neighbour methods.
Continuous datasets were aggregated by sum and resampled using bilinear interpolation. A
summary of the datasets used, including any transformations applied, is included in Table 3.

Table 3: Summary information of the spatial data used in the analysis.

NRM Region Categorical Polygon Mode Nearest (DoEE, 2017)
(name) Neighbour
Land Use Categorical  50m Raster Mode N/A (ABARES, 2017)
(ALUM L2)
Vegetation Type Categorical 100m Raster Mode Nearest (DoEE, 2018)
(MVG) Neighbour
Total Population Continuous Polygon Sum Bilinear (ABS, 2017b)
(count) (ASGS* MB) Interpolation
Indigenous Population Continuous Polygon Sum Bilinear (ABS, 2017a)
(count) (ASGS* SA2) Interpolation
International tourists  Categorical Polygon Mode Nearest (various?)
(name) (ASGS* TR) Neighbour

1 ASGS is the Australian Statistical Geography Standard (ABS, 2018b).
2 Tourist visitation was sourced from each jurisdictions tourist bureau. See Stoeckl et al. (2020) for details.

Depending on how the original benefit transfer had been undertaken we then utilised several
generic methods for distributing the total value across space within an NRM region.

Asset values based on per-hectare estimates

For asset values, such as carbon sequestration, that had been calculated based on the number of
hectares of specific vegetation types, such as forests, within an NRM region we could simply assign
the original per-hectare value to a pixel based on its size and vegetation type.

Assets: Flood mitigation, water purification, gene pool / nursery, erosion control, toxin mediation,
carbon sequestration, existence / bequest and indigenous cultural values (8).

8
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Asset values determined based on per-person estimates

For asset values, such as domestic pets, that had been calculated based on the number of people
normally residing in an NRM region we could assign a value to a pixel based on its population.

Assets: Indigenous subsistence and domestic pets (2).
Asset values determined based on per-person and per-hectare estimates

For asset values, such as domestic recreation, that had been calculated based on the number of
people normally residing in an NRM region — but where the benefits are received away from the
person’s normal place of residence — we converted the per-person estimate to a per-hectare one
based on the area available for the activity (i.e., recreating) before proceeding as above.

Assets: Domestic recreation, international tourism and recreational horses (3).
Asset values based on ABS estimates

For asset values, such as agriculture, that were obtained from the Australian Bureau of Statistics we
first determined the number of hectares of specific land uses (e.g., horticulture) within an NRM
region and then used those to convert the NRM scale estimates of the relevant commodity values to
per-hectare estimates before proceeding as above.

Assets: Agriculture, forestry and infrastructure (3).

Pixels lacking both an NRM region AND a land use OR a vegetation type (predominately ocean) were
excluded/masked from the analysis in order to avoid unnecessary calculation, leaving 1.3M pixels.

Species arrival, spread and impacts

The demographic parameters required to properly characterise the hazards (i.e., pests and diseases)
were obtained from three separate sources. An example species is included in Table 4.

Table 4: Summary of demographic input parameters used in the analysis and their respective
sources. The ‘broadacre mollusc’ functional group is displayed as an example.

Broadacre Mollusc = Golden Apple Snail 0.05 0.7 -0.20 -0.00

* These datasets required additional post-processing by the project team as described below.
Functional groups, exemplar species and their respective establishment rates.

Our choice of functional groups [of species] mirrors those used in DAWE’s Risk-Return Resource
Allocation (RRRA) model (see details in Craik et al., 2017). RRRA is probabilistic model that uses
Bayes nets (Korb & Nicholson, 2003), parameterised using internal DAWE data and expert
judgement, to estimate the change in likelihood of about 60 pest and disease groups entering and
establishing in Australia as a function of investment level. Therefore, rather than replicate existing
work, we used these estimates as the basis for our functional groups, exemplar species and their
respective establishment rates. The rates used in this analysis (counts per annum) for the status-quo
‘system on’ scenario were extracted from RRRA on 17 September 2019 with all controls set to ‘ON’.
Aquatic pests and zoonoses were excluded from the dataset due to limitations in our ability to
model them correctly, leaving 40 functional groups for modelling / analysis (Appendix 6.1).
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Spread rates and portfolio industry impacts

In its current configuration, RRRA also includes monetary consequence measures for the impacts of
each functional group on portfolio industries (agriculture, fisheries and forestry). These measures
have been adapted from estimates provided by ABARES (Hafi & Addai, 2014; Hafi et al., 2014) plus a
handful of other pre-existing studies (e.g., Buetre et al., 2013). In their original format the ABARES
estimates could not simply be re-purposed for our analysis (for the reasons we outlined earlier),
however, the raw data contained within these reports could. Thus, we obtained the majority of the
relevant spread rates (years to % host occupancy) and portfolio industry impact estimates (% yield or
price reduction) from these studies. To convert the elicited spread rates (years to % host occupancy)
to a geometric measure (km per annum) we sourced the relevant host areas from the most recent
production statistics (ABARES, 2018; ABS, 2018a; HIA, 2019) from which we were then able to derive
the intrinsic growth rate, carrying capacity and asymptotic velocity (see Hui & Richardson, 2017).
Where gaps existed in the original ABARES datasets, parameters were sourced from the literature.

Non-market impacts

ABARES has similarly elicited estimates of the non-market (i.e., environmental, social, etc.) impacts
of each of the functional groups utilised within RRRA (Chesson et al., 2014; Parsons & Arrowsmith,
2014). These estimates were provided in the form of a five-point Likert score (0-4) representing the
extent and intensity of impact across a series of environmental attributes (e.g., amenity, regulating,
water, atmosphere, etc.). To convert these into % yield reductions we first re-aligned the ABARES
categories with our modified CICES categories to ensure that they were separable (i.e., they don’t
overlap). We then collated from the peer reviewed literature a dataset of observed or elicited (e.g.,
choice modelled) estimates of the percentage damage to specific non-market assets attributable to
biosecurity hazards. For each asset type (e.g., regulating, cultural; Table 2) we then used a logistic
function (midpoint=2, steepness=2) to align the properties of the two distributions. That is, the
median Likert score was transformed to the median % damage estimate from the literature (by asset
type). A more detailed description of our re-scaling method can be found in Stoeckl et al. (2020).

System cost and effectiveness

The cost (expenditure) of the system is equal to the total expenditure by the Australian Department
of Agriculture, Water and the Environment (DAWE; which includes appropriations and cost-recovery,
thus, at least some of the direct cost to industry is also captured). An estimate of the expenditure by
DAWE on biosecurity activities was included in the recent Craik review of Australia’s biosecurity
arrangements (Craik et al., 2017), and we use that as the nominated cost base for our analysis.

As we described in the introduction, the value of any intervention (from a single control through to
an entire system of controls) is determined by contrasting what is expected to occur with and
without the intervention and subtracting from that the intervention’s cost (Boardman et al., 2011).
In our case, that contrast is the net difference (i.e., the avoided damage) between the damages that
would occur if the system was completely turned off (the ‘counterfactual’) and the damages that we
expect will occur despite the current system (the ‘status quo’). We modelled these two scenarios,
and thus, the system’s effectiveness through the use of two sets of establishment frequencies on the
basis that pre-border and border biosecurity activities mostly reduce the likelihood of establishment,
whilst post-border activities mostly reduce their consequences. Therefore, in addition to those for
the status-quo ‘system on’ scenario (described above), the establishment rates (counts per annum)
for the counterfactual ‘system off’ scenario were also extracted from RRRA on 17 September 2019
with all controls set to ‘OFF’. The full set of establishment rates is included in Appendix 6.1.
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2.2 Model Construction

Arrival

The arrival of each functional group (when) was modelled as a Poisson process, where the number
of arrivals in any given time step was modelled by taking a random draw from a Poisson distribution
with lambda set to the relevant RRRA establishment frequency (count p.a.). As an establishment
rate we were then able to assume that the pest or disease established in a pixel that contains
susceptible host. Thus, the establishment of each arrival (where) was modelled by sampling with
replacement from the set of pixels known to contain susceptible host. The probability of arrival in
an individual pixel was weighted by the human population density in the Moore neighbourhood
(focal pixel plus the eight adjoining pixels) based on Dodd et al. (2016) and Ward et al. (2019).

Spread

Following their arrival, each species was dispersed to all susceptible host pixels whose centroid could
be reached by the species within one year at asymptotic velocity. Thus, if a species with a velocity of
5km p.a. was present in a pixel at time t, it was spread to all hosts within 5km at time t+1.

However, because ABARES’ spread rates were derived from estimates of years to % host occupancy,
jump dispersal must also occur or the implied intrinsic growth rates won’t be realised (because the
host arrangement is neither homogenous nor contiguous). To model the jump diffusion process, we
first split the landscape up into patches. A patch was defined as the collection of pixels separated by
a distance less than the dispersal (diffusion) distance of the exemplar. Because jump dispersal is, by
definition, human mediated we then split these patches by NRM region to ensure that within and
between patch movement reflects the density of human activity (Brander et al., 2012; De Groot et
al., 2012; Firestone et al., 2012; Hudgins et al., 2017). A jump dispersal event was triggered by a
species reaching the edge (including internal edges) of a patch. The number of jumps given a jump
event was modelled as a Poisson process where lambda was set to the count required to achieve the
elicited intrinsic growth rate (validated using 1000 simulations of each exemplar). The jump targets
were sampled with replacement from the set of patches of susceptible host. The probability of
jumping to an individual patch was weighted by the negative exponential (t1,=20km) distance to
each target patch (from the source pixel) multiplied by the human population of the target patch.

The exception to this diffusion / jump dispersal framework was our approach to modelling FMD.
Because the overwhelming majority of the impact attributable to FMD is trade related and would,
therefore, apply to all of Australia we used an infinite dispersal distance for the functional group in
the model, triggering an impact in all of the susceptible host pixels immediately upon an arrival.

Impact

At each time step, the aggregate impact of the species present in each pixel was estimated by
calculating the product of their respective yield reductions multiplied by the value of the asset in
each pixel, summed over all pixels. That is:

(D) Damage, 5+ = (1 - 1_[(1 — yield reductiong, X 1, > X asset valuey, ,
S

where, a is an asset, and 1 indicates the presence of species s, in pixel p, at time t. For example, if
two species are present in a pixel and both reduce the yield of a particular asset by 20%, their
combined impact is 36% (1-((1-0.2)*(1-0.2)))=0.36. If the value of the asset in that pixel is $1000, the
damage is then $360. Our rationale for this choice of functional form is discussed in Appendix 6.3.
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2.3 Value Estimation

Simulation settings

50,000 iterations of each system state (on / off) were modelled over a 50-year time horizon in order
to properly contrast the two scenarios. A summary of the model settings is included in Table 5.

Table 5: Summary of key simulation parameter settings.

Assets at risk 16 (see Table 2)

Spatial resolution Australia, 2500m x 2500m (1.3M pixels)
Biosecurity Hazards 40 (see Appendix 6.1)

Temporal resolution 50 years, 1-year intervals

Iterations 50,000 of each state (100,000 total)
Discount rates 5% (financial) and 3% (environmental)

Damages and avoided damages (benefits)

Damages were first estimated, by asset, at the pixel scale (following equation 1, above). Pixel scale
damages were then summed, by asset, for each time step. Yearly damages, by asset, were then
discounted according to their asset type (financial / environmental; Table 5). Total damages, by
asset, for each iteration were calculated by summing the discounted yearly damage. Overall
damages (all assets combined) were then simply the sum of total damages (by asset).

The median benefit was estimated by calculating both the difference between the median overall
damage estimates for the two system states (‘system on’ / ‘system off’) and by calculating the
pairwise difference between the equivalent iteration of the alternate states (i.e., the overall
damages of the n'" iteration of ‘system off’ minus the overall damages of the n'" iteration of ‘system
on’). The latter allowed us to estimate the variability in the benefit estimate.

Net present value (benefits minus costs)

Finally, we estimated the Net Present Value (NPV) of the biosecurity system by subtracting the
[financial] costs of the system’s operation from the median benefit calculated above. Costs were
assumed to remain constant over time, subject to a net discount rate of 5% per annum (Table 5).
Convergence was assessed by a rolling variance and the standard error of the mean (Appendix 6.2).

Unless otherwise specified, all data processing and analyses were undertaken in the R software
environment for statistical computing and graphics v3.6.2 (R Core Team, 2019) with the following
packages installed: data.table (Dowle & Srinivasan, 2019), dplyr (Wickham et al., 2019), flock
(Popivanov, 2016), fst (Klik, 2019), gdalUtilities (O'Brien, 2019), lattice (Sarkar, 2008), latticeExtra
(Sarkar & Andrews, 2016), magrittr (Bache & Wickham, 2014), raster (Hijmans, 2019), rasterVis
(Perpifian & Hijmans, 2019), Rcpp (Eddelbuettel & Frangois, 2011), readr (Wickham et al., 2018),
reticulate (Ushey et al., 2019), rnaturalearth (South, 2017), sessioninfo (Csardi et al., 2018), sf
(Pebesma, 2018), sp (Bivand et al., 2013), stars (Pebesma, 2019), tibble (Miiller & Wickham, 2019),
and tidyr (Wickham & Henry, 2019). Python 3.6.9 (Van Rossum & Drake, 2009) was specifically used
to rasterise the ABS mesh blocks with the following packages installed: geopandas (Jordahl et al.,
2019), rasterio (Gillies & others, 2013), shapely (Gillies & others, 2007), and nhumpy (Oliphant, 2006).
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3 Results

The total flow of benefits arising from assets vulnerable to biosecurity hazards was calculated to be
AS$251.52 billion per annum, or AS5.696 trillion over 50 years (discounted at 3-5%). In the absence
of a biosecurity system we forecast that approximately AS671.94 billion in damages attributable to
newly introduced pests and diseases would be incurred by these assets over the next 50 years.
However, we estimate that these damages would decline by approximately A$325.26 billion (the
benefit) to AS346.67 billion in response to the system’s operation (at a cost of $10.45 billion).

Thus, we estimate the Net Present Value of Australia’s Biosecurity System to be A$314 billion (95%
interval: 156.47b - 466.86b) at an average return on investment of 30:1 (95% interval: 15-45:1).

3.1 Assets

Total flow of benefits from assets vulnerable to biosecurity hazards

As outlined in Stoeckl et al. (2020) the total value of the flow of benefits from assets vulnerable to
biosecurity hazards was estimated to be A$251.52 billion per annum (Figure 2). Taken over a 50-
year period (the horizon of this analysis), and discounted at between 3-5% (Table 5), these assets are
expected to provide more than AS5.696 trillion of benefits (NPV) to Australians.

Infrastructure
$25.898 (10.3%)\

Portfolio industries

Companion animals $62.585 (24.9%)

$15.247 (6.1%) \

Cultural services
$19.845 (7.9%)

Water and
subsistence
foods

$16.353 (6.5%)

Regulating services
$111.593 (44.4%)

Figure 2: Annual flow (billions AS) of benefits from assets vulnerable to biosecurity hazards.

Regulating services (e.g., erosion prevention, carbon sequestration, etc.) were found to be the
highest value asset (A$111.59b p.a.), followed by portfolio industries (i.e., agriculture and forestry;
AS$62.59b p.a.) and infrastructure (A$25.90b p.a.), respectively. Assets generally not traded in the
market — largely goods and services related to the environment — contributed almost 59% to the
total asset values, whilst so called ‘market’ values (e.g., agriculture) contributed the remaining 41%.
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Location of assets vulnerable to biosecurity hazards

The distribution of asset values across space (both within and between NRM regions) was found to
be highly heterogenous. In addition to the distinct variation between NRMs outlined in Stoeckl et al.
(2020), we also observed considerable variation within NRM regions. Using the Port Phillip and
Westernport NRM region as an example (Figure 3), distinct context-specific patterns can be seen in
the spatial arrangement of asset values. In the case of agriculture, horticultural regions are easily
identified by their relatively high per unit area values (compared with broadacre industries), whilst
more subtle differences in the value of broadacre industries, particularly livestock grazing, can also
be observed at regional boundaries - reflecting the regional differences in profitability (Figure 3).
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Figure 3: Annual flow of benefits (ASM) per 2500m x 2500m area from assets vulnerable to
biosecurity hazards for selected asset types. Extent shown is 100km x 100km area centred on the
Port Phillip and Westernport NRM region (Melbourne, Australia).

A completely contrasting pattern can be observed in the arrangement of carbon sequestration.
Here, values are driven solely by vegetation type with the highest values in mangrove, wetland,
forest and woodland areas with little variation across regional boundaries. Similarly contrasting
patterns can be found in each of the 16 asset classes and 56 NRM regions (data not shown),
suggesting that the realised impact of the modelled pests and diseases is likely highly dependent on
when and where an species establishes in the first instance. Significant biogeographic barriers also
separate assets in Western Australia and Tasmania from the rest of Australia, isolating impacts.
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3.2 Hazards

Arrival over space and time

In the absence of its biosecurity system we expect that an average of 27.52 species would establish
each year in Australia (1376.36 over 50 years; RRRA Unit, 2019). With the system turned ‘on’ the
expected number of establishments declines by 81% to 5.20 per year (260.17 over 50 years;
Appendix 6.1). Due to our use of naive risk maps (see Section 2.2), the majority of the incursions
occur along the populous east coast (from Cairns to Adelaide) plus a small area adjacent to Perth in
the south west. A paired comparison of what might occur under the two system states is shown in
Figure 4 — note the cases of multiple hazards affecting the same industry in a single region.
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Figure 4: Location of initial establishments over time by functional group and NRM region for a
single 50-year simulation of the system ‘off’ versus the system ‘on’. The colour indicates the year of
establishment (darker is earlier/longer).

15



Red Imported Fire Ants in Australia
Submission 10 - Supplementary Submission

Spread over space and time

The net effect of reducing the number of incursions that occur is a reduction in the probability that
any given area will be affected by a particular pest or disease in the future (and, thus, incur impacts).
For example, our modelling suggests that without a biosecurity system in place the probability of a
tramp ant establishment in each of Brisbane, Sydney and Melbourne in the next 20 years is almost
100%, but that current biosecurity controls reduce that likelihood to around 20% (Figure 5).
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Figure 5: Probability of a pixel being infested/infected with either a tramp ant or a broadacre virus in
the year 2040 dependent on the state of the biosecurity system.

It is important to note that these maps represent the absolute probability of occupancy in a 20-year
period, not the relative probability of establishment given an arrival — as is usually shown in species
[potential] distribution models and so called ‘risk maps’ (see Camac et al., 2019). Hence, when
considering the broadacre virus example, it is possible to infer that the probability of a virus being
prevalent across the entire West Australian wheatbelt in 20 years is approximately halved due to the
operation of the system (Figure 5).
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3.3 Damages (Avoided) - Benefits

Total damages avoided

Should the biosecurity system cease to operate we forecast that A5671.94 billion in damages
attributable to newly introduced pests or diseases disease would be incurred in Australia over the
next 50 years (range: AS487.84b — A$813.04b). Instead, we estimate that A$325.26 billion in
damages will be avoided due to the ongoing operation of the system (which reduces damages to
AS$346.67 billion (range: $107.79b — $616.16b); Figure 6). The 95% intervals for the avoided
damages (benefit) were A$166.92b - AS477.32b (Table 6).
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Figure 6: Overall damages over 50 years with the system on/off. Dotted line indicates the
median damage estimate and the number indicates the damages avoided (benefit).

Examination of the cumulative distributions (not shown) indicates that the biosecurity system clearly
demonstrates first-order stochastic dominance over the no-biosecurity counterfactual. A rank-sum
test estimates that the probability that the system’s benefits are greater than zero is 99.999%.

The stability (convergence) of these estimates was assessed by calculating the effect on the median
by increasing the number of iterations. This was done by calculating a cumulative median for
iterations 1 through 50,000, and then calculating the range of that median (i.e., the maximum — the
minimum) for a rolling 1000 simulation window (Figure 9; Appendix 6.2). Except for Agriculture
(which continues to vary by up to AS100M), all the asset types had a range of less than AS10M at 50
years, with several less than AS1IM. Thus, we expect that our estimates have converged to within
0.03% of the true median.
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Benefits by asset type

Agriculture was the largest beneficiary of the system’s operation (A$210.33b), followed by domestic
animals (A$18.33b), recreation (A$15.83b) and erosion control (A$12.71b; Figure 7). In contrast to
the balance of overall asset values, those assets traded in markets (e.g., agriculture, infrastructure,
etc.) avoided the larger proportion of damages (A$252.16b; 77%), with ‘non-market’ (e.g.,
regulating, cultural services, etc.) comprising the balance of the impacts (A$73.10b; 23%).
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Figure 7: Total damages by asset over 50-years with the system on/off. Dotted lines indicate the
medians and the number the damages avoided.

The relative balance of these impacts is driven by several factors (some of which are structural),
though, the most critical is the stark difference in the spread rates and yield reductions between the
various functional groups. For example, many of the hazards affecting extensive agriculture (e.g.,
wheat stem rust, bluetongue) have spread rates in excess of 50 km p.a., whereas many of the
exemplars chosen to represent hazards affecting the environment have rates less than 10 km p.a.
with smaller effects on asset yield. We will return to this issue later in the discussion.

18



Red Imported Fire Ants in Australia
Submission 10 - Supplementary Submission

Benefits over time

The timing of the benefits also varies considerably between asset classes (Figure 8). Where an asset
is affected by an animal disease (e.g., agriculture, domestic animals and horses), damages quickly
accrue in the counterfactual before tapering off once the disease fully occupies its potential host
range and discounting reduces the benefits. Conversely, for environmental assets affected largely by
invasive plants and vertebrate pests (e.g., water, carbon sequestration and erosion control) damages
continue to increase across the 50-year study period, albeit from a lower base (Figure 8).
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Figure 8: Total benefits of the biosecurity system, by asset, over 50 years. Solid line is the median,
dark shading is the 50% interval, light shading is the 95% interval.

These differences in timing also reflect the spatial arrangement of the various assets, particularly,
the proximity of those assets to the pathways of introduction (Figure 3 and 4). As was highlighted in
Stoeckl et al. (2020), agriculture, infrastructure and recreation/tourism are all heavily clustered in
the populous coastal NRM regions making them highly vulnerable to human mediated introductions
in the short-term (Figure 8) relative to regulating services assets which dominate Australia’s interior.
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3.4 Costs

Government expenditure

Expenditure on biosecurity activities by the Australian Department of Agriculture, Water and the
Environment in 2016-17 was reported in Craik et al. (2017) to be $A572.67m. Taking this level to be
approximately fixed in real terms (noting the discussion in Craik et al., 2017), this corresponds to an
estimated expenditure of approximately A$10.45b over the 50 year horizon of our analysis.

As highlighted in the introduction, this omits the costs (and benefits) associated with post-border
controls delivered by State and Territory government biosecurity agencies within Australia.

3.5 Net Present Value of Australia’s Biosecurity System

Given our median estimate of A$325.26 billion in avoided damages (benefit) and a forecast
expenditure (cost) of A$10.45 billion, we estimate the Net Present Value of Australia’s Biosecurity
System over 50 years to be A$314 billion (95% interval: 156.47b - 466.86b) at an average return on
investment of 30:1 (95% interval: 15-45:1). Our estimates of value over time are in Table 6.

Table 6: Net Present Value (ASbillions) of Australia's biosecurity system over time. The 95% interval
is shown in brackets.

Avoided Damages Costs Net Present Value Average ROI
(AShillion) (AShillion) (ASbillion) (NPV/Cost)
10 95.19 (9.39-153.87) 4.42 90.77 (4.97 — 149.45) 20:1(1-33:1)
20 195.32 (66.92 — 304.71) 7.13 188.19 (59.79 — 297.58) 26:1(8-41:1)
30 257.58 (111.45-391.30) 8.80 248.78 (102.65 —382.50) 28:1(11-43:1)
40 297.41 (143.25 — 442.44) 9.82 287.59 (133.43 — 432.62) 29:1 (13 - 44:1)
50 325.26 (166.92 —477.31) 10.45 314.81 (156.47 — 466.86) 30:1 (15-45:1)
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4 Discussion

To the best of our knowledge, these results represent the first ever estimate of the value of an entire
biosecurity system (or even a substantial part of a system). As the first estimates of their kind it is
difficult to properly contextualise our results other than to say that they appear plausible given the
existing evidence. We further recognise the many necessary assumptions and limitations in our
analysis and, as such, view our estimates as the beginning of a discussion about system valuation
rather than its end. Nevertheless, it is clear that the continued operation of Australia’s biosecurity
system over the next fifty years will yield large positive benefits for Australians.

4.1 Comparative value

Over the last twenty years, as the negative effects of global species exchange have become clearer,
an increasing amount of effort has gone into quantifying the monetary impacts of pests and disease.
The most well-known of these analyses is the work of Pimentel et al. (2000) and its various updates
(e.g., Pimentel et al., 2005), though, several more credible analyses have recently emerged with an
increasing emphasis on the impacts of invertebrates (e.g. Bradshaw et al., 2016; Paini et al., 2016).
Within Australia, the two most well-known empirical estimates of impact are A$4b p.a. for invasive
plants (Sinden et al., 2004) and A$420m p.a. for vertebrate pests (Bomford & Hart, 2002). However,
whilst these analyses are useful for conveying the magnitude of the impacts caused by introduced
pests (and diseases), the majority of the available estimates (summarised in Olson, 2006; Heikkila,
2011; Marbuah et al., 2014) relate to damage that has occurred despite the presence (or absence in
some cases) of biosecurity controls rather than the damages that were avoided.

Nevertheless, we can use these figures to calibrate our estimate of damages under the ‘status quo’.
In year two of the project (Stoeckl et al., 2018), we compiled a dataset of the % reductions in GDP
attributed to species grouped by the traditional biosecurity sectors (e.g., animal diseases, plant
pests, pest plants, etc.). If we take the median estimate for each of these groups (assuming that
they are separable) and add them together we expect approximately a 1% decline in GDP, despite
the system being ‘on’. Utilising a different method, in their global analysis, Paini et al. (2016) also
estimated that Australia should expect a decline of approximately 1% of GDP due to invasive species
given the current global trade environment. One percent may sound small but, given Australia’s
current GDP of A$1.887 trillion (ABS, 2020), a 1% reduction over 50 years (discounted at 5%) is
approximately A$344.51b. This level of impact is almost identical to our median estimate (AS346.67
billion) of the damages that we expect to occur despite the system (Figure 7; Table 6) giving us
confidence that our ‘system on’ estimate is reasonably well calibrated, notwithstanding the vast
differences in approach.

Much has also been made of the ‘invasion curve’ in Australian biosecurity since its popularisation by
Biosecurity Victoria in 2009 (Biosecurity Victoria, 2009, 2010). In particular, the benefit cost ratios
(BCR) included in the diagram have been extensively used to justify an increased emphasis on
prevention and early intervention / eradication (see discussion in Kompas et al., 2019). Remarkably,
the origins of this chart are not well understood, and the references from which the BCRs were
drawn are even more opaque. For the record, the chart originated in Chippendale (1991) and was
revised by Hobbs and Humphries (1995) before being styled by Biosecurity Victoria in 2009 for their
biosecurity strategy and subordinate policy frameworks (Biosecurity Victoria, 2009, 2010). It was at
this time that the ratios were added, however, the origins of these numbers remain unclear. The
recollection of those involved in 2009 is that they were most likely drawn from AEC Group (2006).

21



Red Imported Fire Ants in Australia
Submission 10 - Supplementary Submission

Although the efficiency of prevention over control is well established (Leung et al., 2002; Olson &
Roy, 2002; Leung et al., 2005; Finnoff et al., 2007), there is [of course] no set BCR for an outcome.
Therefore, whilst our estimate of the average ROI (30:1; Table 6) is correctly positioned within the
range of BCRs shown on ‘the curve’, it is a somewhat meaningless comparison. This is because the
BCRs on the diagram, regardless of their origin, relate to single interventions targeting single species.
At the system level, a risk control that ‘prevents’ two species might have double the benefit, but the
addition of a second control might conversely double the cost; either way, the returns from any
outcome (e.g., prevention) are clearly not fixed. Further, the prevention vs control literature (from
which these ratios are frequently drawn) is dominated by optimisation analyses; that is, studies that
determine the optimal level of investment in prevention vs control (e.g., Moore et al., 2010; Rout et
al., 2011). Though, in practice, most jurisdictions employ the use of an ALOP. This requires them to
reduce risk to a specified level well beyond what may be theoretically optimal in order to minimise
the likelihood of damages, but at a diminishing marginal return (Dodd et al., 2017). We speculate
that this is why the average system level returns might be lower than some may expect based on
analyses of single species returns (Keller et al., 2007; though, see Leung et al., 2014; Arthur et al.,
2015). Nevertheless, the fact that our results are again in the expected range is reassuring.

Our decision to focus on cumulative damage to assets rather than the expected consequences of the
various hazards will have also moderated our estimate of the damages that might occur in the
counterfactual and, thus, our estimate of the system’s value. At the beginning of this project almost
no guidance existed as to how one should go about properly constructing a ‘no biosecurity’
counterfactual, and even now (three years on) we are still not aware of any other attempts to
construct one (though, see Essl et al., 2019). But what we have learned is, that the theoretical issues
raised in the introduction do matter, and that if we had failed to develop a method to address them
then we would have grossly overstated potential damages (by >80%; Appendix 6.3). Looking closely
at the data (Figure 4 & Figure 5), it is clear that outbreaks of higher spread species routinely interact
in the ‘system off’ state, creating significant potential for double counting and/or aggregation errors.
As we expected, we can also see saturation (complete infection/infestation of the entire host range)
occurring within several of the functional groups (due to their high arrival rates in the
counterfactual; Appendix 6.1), validating our earlier arguments that the use of traditional likelihood
x consequence methods would overstate the risk in this context. The trade-off to this is, of course,
an increase in the data required to estimate these potential impacts and a significant increase in the
computational complexity. Despite this, it appears that the new Alien Scenarios project (Essl et al.,
2019) is proceeding in a similar direction, suggesting that our novel approach is sound.

Several other [model] structural decisions likely also influence (downward) our final value estimate.
Perhaps the most notable is the absence any of post-border intervention by the states/territories.
This doesn’t affect the system ‘off’ counterfactual, but it will undoubtedly increase the damages that
occur with the system ‘on’, and hence, reduces the overall value estimate (both benefits and costs).
More subtly, several of the functional groups, particularly the non-agricultural (syn. environmental)
and animal-other (syn. domestic animal) groups, should probably be split as the diversity within
these groups was difficult to model accurately through a single exemplar. This has also likely led to
an underestimation of some environmental damages, in our opinion. Similarly, as we discussed in
Stoeckl et al. (2020), our estimates of damage to indigenous cultural values are also likely a gross
underestimate given that they are predicated on the application of western methods, however well
intentioned. Taking all of this into consideration — the calibration of the status quo estimate; the ROI
in the right range; the properly constructed counterfactual; and the various omissions — we consider
our results to be highly plausible in the context of the existing evidence base.
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4.2 Limitations

Irrespective of our belief that our estimates are well calibrated it is critical that we acknowledge the
many necessary limitations and assumptions upon which they are based. Mostly, these limitations
arise due to significant knowledge gaps and data deficiencies forcing us to make assumptions or rely
on expert judgement in lieu of empirical data. For example, as we discussed in Stoeckl et al. (2018),
there is a paucity of Australian studies that examine the impact of pests or diseases on assets other
than agriculture, therefore, benefit transfer techniques must be relied on to obtain such data. Our
approach to this has been clear — where sufficient data existed, we used that data to inform our
inputs, but where it didn’t, we omitted that element from our analysis. As such, our analysis does
not consider impacts on social or human capital. Nor does it consider aquatic or zoonotic species.
Whenever we transferred values, we used medians rather than means, therefore, minimising the
influence of outliers. Similarly, wherever ambiguity existed about the assignment of a value to a
group we always defaulted to the lower estimate. Whilst, in aggregate, these decisions will lower
our overall estimate of value we believe that such an approach provides the most defendable result.

It is also important that we are explicit about the macro-scale nature of our modelling framework.
That is, we manage the complexity associated with modelling the impacts of 40 groups of species on
16 classes of assets by generalising and abstracting over large spatial and temporal scales. An
example of this is our use of naive risk maps (Section 2.2). Risk maps, better termed establishment
likelihood maps, seek to describe the relative likelihood of an species establishing at a location based
on factors such as host presence, climate suitability, and propagule pressure given proximity to
pathways (Venette et al., 2010; Camac et al., 2019). As such, they are specific to each individual
species, however, because we modelled species groups, we needed a more generic solution.
Therefore, rather than take the bottom up (individual species) approach, we instead worked top
down developing a naive risk surface based on the existing studies of all species (Dodd et al., 2016;
Ward et al., 2019). These sorts of generic / naive approaches do invariably mean that some accuracy
is lost at the individual species level, but we know from recent studies of generic dispersal kernels
(Hudgins et al., 2017) that such methods perform surprisingly well in aggregate. It is for these
reasons that we also don’t ever intend to report damages at anything lower than the NRM scale,
even though it is possible to do so. Thus, it is important to reiterate that our model is not designed
to answer micro-scale questions.

Rather, our desire has been to create a generic framework for system-level valuation within which
detail can be progressively added and data refined. In its current format our model is highly generic,
however, considerable potential for extension and refinement exists. Obvious extensions include:
the addition of post-border interventions, revision of the exemplar species, and the development of
more nuanced establishment and dispersal modes for different pest and disease types. Longer-term
refinements might also include: dynamic elements such as increasing arrival rates, land-use changes,
or climate change; the calculation of broader (second round) economic impacts; and ultimately
stochastic optimisation. Though, as our sensitivity analysis indicates, the greatest improvements in
accuracy are likely to come from a more detailed understanding of several processes for which we
currently have very little evidence, such as: non-market asset values; spatially explicit estimates of
establishment risk; and the cumulative effects of multiple pests on different types of assets
(Appendix 6.3). Keeping this in mind, we have worked hard when developing the model to ensure
that it can be easily updated, and re-run as new knowledge and data become available. For these
reasons we see the completion of this framework as the beginning of a discussion about system
valuation rather than its end.
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4.3 Conclusions

Over the last three years we have sought to develop a transparent, repeatable and robust estimate
of the value generated by Australia’s biosecurity system — something that, to the best of our
knowledge, has never been successfully achieved. In that time, we have delivered:

Year 1 (Dodd et al., 2017)
- acomprehensive review of the biosecurity economics literature;
- adetailed description of Australia’s biosecurity system;
- four small case studies highlighting critical issues identified by the project team; and
- aframework for accurately estimating the value of Australia’s biosecurity system.

Year 2 (Stoeckl et al., 2018)
- acomprehensive review of the non-market valuation literature relevant to biosecurity;
- amethod for extending DAWE's consequence measures to include non-market values;
- amethod for properly aggregating measures of value up to the system scale; and
- two detailed case studies demonstrating proof of concept for a whole-of-system approach.

Year 3 (outlined here)
- estimates of the annual flow of benefits arising from 16 assets across 56 NRM regions;
- estimates of the distribution of those assets (both market and non-market) across space;
- estimates of the % damage to non-market assets attributable to 40 species groups; and
- abespoke, spatiotemporal asset damage simulation model.

Through the implementation of our model, we have generated what we consider to be the most
defensible estimate of the value of Australia’s biosecurity system possible, given the available data.
Not surprisingly, that estimate indicates that continued investment in biosecurity will yield hundreds
of billions of dollars of benefits for Australians, our economy, and our environment. Though, more
practically, we have developed a transparent and repeatable framework for modelling the value of
biosecurity interventions at the system scale, strengthening our scientific capability. Given the
current extent of global connectedness, this has never been more important.
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6 Appendices

6.1 Functional groups of pests and diseases

1 AGM Asian gypsy moth 0.064875 0.02538

2 Animal other bacteria Contagious equine metritis 1.82087 0.110891
3 Animal other micro other Equine babesiosis 1.82087 0.110891
4 Animal other virus Equine influenza vV 0.997636 0.104064
5 Avian virus Highly pathogenic avian influenza 0.706801 0.057457
6 Broadacre bacteria Angular leaf spot 0.001005 1.71E-04
7 Broadacre beetle Large grain borer 0.001154 6.98E-05
8 Broadacre bug thrips mite Russian wheat aphid 0.105546 7.07E-04
9 Broadacre fungus Wheat stem rust 0.407039 0.148583
10 Broadacre mollusc Golden apple snail 0.186469 0.067908
11 Broadacre virus Cotton leaf curl virus 0.026626 0.011386
12 Broadacre weed Red witchweed 2.890491 0.835709
13 FMD Foot and mouth disease 0.291542 0.037885
14  Forestry beetle Asian long-horned beetle 0.942236 0.175363
15 Forestry fungus Pine pitch canker 1.624083 0.161894
16 Forestry nematode Pine wilt nematode 0.088554 0.015222
17 Forestry termite Termites 0.785426 0.153526
18 Forestry weed False indigo-bush 1.850884 0.353497
19  Fruitfly Papaya fruit fly 0.243165 0.054189
20 GAS Giant African snail 0.008382 0.002192
21 Horticulture bacteria Citrus canker 0.064326 0.013816
22  Horticulture beetle Colorado potato beetle 0.087465 0.029697
23  Horticulture bug thrips mite Thrips 0.361281 0.065253
24  Horticulture fly moth False codling moth 0.133884 0.003539
25 Horticulture fungus Citrus powdery mildew 0.855012 0.264786
26  Horticulture nematode Potato cyst nematode 0.00851 7.06E-04
27 Horticulture virus Tomato black ring nepovirus 0.089152 0.024963
28 Horticulture weed Generic Cyperus 3.190966 0.873629
29 Khapra beetle Khapra beetle 0.298485 0.066239
30 Livestock bacteria Haemorrhagic septicaemia 0.58023 0.037485
31 Livestock bug thrips mite Varroa mite 0.008176 0.002652
32  Livestock fly moth Screw worm fly 0.007332 0.001442
33 Livestock virus Bluetounge 1.05971 0.075572
34 Non-agricultural bee wasp Generic Hymenoptera 0.191834 0.035317
35 Non-agricultural fly moth Generic Diptera 0.152683 0.034531
36 Non-agricultural fungus Dutch elm disease 2.89E-10 1.09E-10
37 Non-agricultural micro other Dutch elm disease 3.86E-04 2.76E-05
38 Non-agricultural vertebrate Black spined toad 0.178296 0.033167
39 Non-agricultural weed Mexican feather grass 4.872387 1.162085
40 Tramp ant Red imported fire ants 0.523536 0.051603

! These establishment frequencies were produced using the Risk Return Resource Allocation (RRRA) model designed
by the Department of Agriculture, Water and Environment (RRRA Unit, 2019). The model was run on 17/09/2019
using data from the 2018/19 financial year. The model was first run with all government biosecurity controls set to
their ‘current’ settings (the ‘system on’ scenario), and run a second time to model the scenario where all biosecurity
controls are disabled (the ‘system off’ scenario). RRRA modelling requires a number of simplifications and
assumptions. It uses departmental and inter-agency data sources, some of which are not designed for analytical
purposes and therefore have limited accuracy. Substantial uncertainty is inherent in some model parameters and
not currently quantified. Ongoing model improvements and data updates will influence results (see Appendix 6.3).
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Rolling range of median damages with system on/off (Millions AUD)
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Convergence of estimates

Agriculture - C Sequestration Domestic Animals Erosion
o
o 7 = 2 ©
S | b o
S 2 5 n
— _ o g
g R 2 2
1 = (4]
° - o = 2
S el & o
i - i - R e I |
Flood Mitigation Forestry Gene Pool
[Te]
o~ Qo ]
@ a o ™
o~ n _|
o —
L} N
— = o
< o =i
=~
[T}
™~ Te) n —
o o 1o | o
Indigenous Infrastructure Rec. Horses Recreation
L=} o
o m o _|
< © £
o _
™M — o (cil) 9
< 2
N o
& = o |
~ — o o~
o - o =} 1o —
Subsistence Tourism
o |
o~ o o
o < — o _|
— o fee] ™~
o ® 5
— ] o = o
o o < —
- o
— o n —
o
S [ i =) T Ly -
=) T T T T T T T T T T T T T T T T T T T T

10000 30000 50000 10000 30000 50000 10000 30000 50000 10000 30000 50000
Number of iterations

Figure 9: Variation in the median damage estimates over the last 1000 simulations. Red line is
system off, blue line is system on. Dotted, en-dash and em-dashed lines indicate 1M, 10M and
100M variation in the median, respectively.
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6.3 Sensitivity Analysis
Methods

To determine the relative sensitivity of our final benefit estimate to uncertainty in the input values
we varied each of the key parameters (or sets of parameters) either by +/- 10% of their baseline
value (continuous inputs) or off/on (discrete inputs). For each of the parameters we then completed
20,000 simulations of the model (whilst holding all others constant) and re-calculated the benefit.

Discrete changes included: adding yield losses together rather than calculating their product (‘Sum’);
varying the discount rates by +/- 2% absolutely rather than relatively (‘Discount 1,3’ & ‘5,7’); using
hyperbolic rather than exponential discounting (‘Discount H5’ & ‘H7’); distributing the probability of
establishment uniformly across space rather than heterogeneously (‘Unweighted’); and increasing
the distance decay to 50 and 100 km (‘Decay 50’ & ‘100’), respectively.

Results

A tornado chart summarising our results is shown in Figure 10. For reference, a +/- 10% change in
asset values resulted in +/- 10% change in benefits. Thus, the benefit estimate was [most] sensitive
to how yield losses were aggregated, discount rates, and how establishment risk was distributed.

Sum i !
Discount 1,3 ' :
Discount 5,7 ' ]

Discount H5 [r—
Unweighted [R—
Asset ———
Decay 100 = 5 i%gzﬁ
Discount H7 =
Impact . =
Decay 50 =
Velocity |
Arrival |

| | | | | | |
250 3003236350 400 450 500

Benefit (Billions AUD)

Figure 10: Sensitivity of the median benefit estimate to changes in select input variables. Coloured
bars indicate a 10% change in the input, grey bars indicate a discrete change. Length indicates
relative sensitivity to the input (i.e., influence increases with length).
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Conversely, the benefit estimate was relatively insensitive to arrival and spread (velocity) rates, yield
losses (impact) and the degree of distance decay - at least in comparison to the other parameters.
For example, a 10% change in arrival rates resulted in a <1% change in the benefit (Figure 10) where
discrete choices to sum yield losses across species and distribute establishment risk homogenously
across space would result in a >80% change (increase) in the benefit estimate (data not shown).

Discussion

The results of our sensitivity analysis confirm our hypothesis that the theoretical considerations
raised in the introduction are indeed significant issues that require careful attention. In particular,
our choice of functional form — that yield will decline proportionately, rather than additively — had a
significant influence on the benefit estimate (Figure 10), by preventing losses exceeding the value of
the asset (due to double counting). Our rationale for this choice is that yield losses are frequently
expressed in relative terms and, as such, their absolute impact is known to be variable dependent on
an assets value. Thus, it’s only a small stretch to argue that if the stock of the asset has declined due
to damage caused by an existing incursion (or any other reason), that it will continue to decline
proportionately to the revised asset value for each subsequent harm until there is nothing left to
damage. Though, we’re not aware of any examples of where this assumption has been tested or,
more generally, where the effects of multiple species on an asset have been objectively measured.

Likewise, our choice of discount rate had a significant effect on the final benefit estimate. Discount
rates are well understood to be contentious (Weitzman, 1998, 2001), and it is important to clarify
that the rates that we have chosen here are lower than those recommended by both the Australian
Productivity Commission (Harrison, 2010) and the Office of Best Practice Regulation (OBPR, 2007).
However, both of these recommendations were made based on the market rates of return in the
period leading up to the Global Financial Crisis. Since then, marginal rates of return to capital have
significantly declined and are likely to remain depressed for some time given the state of the global
economy. Nevertheless, we have conducted sensitivity analyses at the suggested rates, and these
are included for reference. We have also explored the effect of using hyperbolic discounting which
better accounts for issues related to inter-generational equity (Weitzman, 1998, 2001).

It is also important that we briefly discuss the extent to which our results are dependent on the
establishment rates sourced from RRRA given the potential uncertainty surrounding their accuracy
(see the explanatory notes included in Appendix 6.1). In short, our analysis indicates that the final
value of the system is relatively insensitive to the set of parameters that are potentially the most
problematic (i.e., the establishment rates) and, as such, we are satisfied that our findings are robust
to any uncertainty in their accuracy. Looking closely at the results (e.g., Figure 6), we can see that
the damages that occur in the ‘system off’ state have a lower variance. This is because damages are
limited by the value of the assets. Thus, if the establishment rates exceed the threshold required to
completely erode the assets, then small changes in these rates will have little effect on damages. In
fact, the avoided damages will decline (as we see for velocity in Figure 10) because damages will
increase more quickly in the ‘system on’ state than in the ‘system off’ state decreasing overall value.

Taken together, our results highlight the need to think clearly about theoretical issues when
constructing a counterfactual, because many of the assumptions underpinning the methods used to
estimate the risk of biosecurity hazards in the status quo do not hold in that context. Unfortunately,
few examples of properly constructed counterfactuals exist in the biosecurity/biodiversity literature
(Ferraro & Pattanayak, 2006; Bull et al., 2014), and none consider multi-pest x multi-asset damages
as we have here. This is clearly a priority area for further research.
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Abstract It has been recognised for some time that
the community has an important role to play in
invasive-species management. Reports from the com-
munity about new incursions can lead to significant
cost savings when this early detection results in shorter
management programs. Unfortunately there is little to
guide invasive-species managers on cost-effective
ways to elicit and incorporate information from the
public in their pest-management programs. Not all
community surveillance is equal: some information
from the public about the presence of pests and
diseases may arise from chance encounters, other data
may be reported by stakeholders from a particular
industry or by groups of volunteers organised on the
basis of citizen science activities. While the resources,
activities and effort required to encourage each type of
community surveillance are known to differ, very little
is known of the relationships that determine effective-
ness, and thus the appropriate level of investment that
would be required to encourage a particular level of
reporting. In this research we focus on passive
surveillance—the most fortuitous type of community
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surveillance—and review the current knowledge base
on measuring its cost and effectiveness. We aim to
stimulate the research required to improve our under-
standing of passive surveillance, and we provide
guidance on the type of data that should be collected
by agencies to enable this research. This information
could then provide us with the ability to design optimal
surveillance portfolios that integrate the surveillance
opportunities provided by the public to best advantage.

Keywords Passive surveillance - General
surveillance - Citizen science - Community
engagement - Biosecurity - Cost-effectiveness

Introduction

Biological invasions cause significant damage world-
wide through their effects on human health, the
environment and the economy (Aukema et al. 2011;
Pimentel et al. 2005). As a result, considerable
amounts of public and private funds are spent across
the globe managing invasions (Sinden et al. 2004).
Surveillance is an essential part of invasive species
management programs. The surveillance literature is
extensive but its focus has been on decision-making in
the active surveillance context, where targeted search-
ing is conducted by trained personnel (Baxter and
Possingham 201 1; Bogich and Shea 2008; Cacho et al.
2006; Epanchin-Niell et al. 2014; Yemshanov et al.
2014; Spring and Kompas 2015) with little coverage
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of how to incorporate surveillance undertaken by
members of the public into decision-making (Cacho
et al. 2010; Cacho and Hester 2011; Cacho et al. 2007;
Keith and Spring 2013). This is despite long-standing
recognition within biosecurity agencies of the useful-
ness of reports from members of the community of
their encounters with invasive species (Beale et al.
2008; MAFBNZ 2008). This recognition stems from
important detections of new incursions, or new foci of
existing incursions, as a result of reports by members
of the public. For example, in Australia, reports from
the public led to the initial discovery of the European
wasp (Davis and Wilson 1991) and Khapra beetle
(Trogoderma granarium) (Beale et al. 2008) in
Western Australia, and red imported fire ant (RIFA)
(Solenopsis invicta) in Queensland (Jennings 2004).
In New Zealand members of the public were respon-
sible for initial discovery of RIFA, crazy ant (Para-
trechina longicornis), carpenter ants (Camponotus
sp.) and fall web worm (Hyphantria cunea) (Froud
et al. 2008), painted apple moth (Teia anartoides)
(Harris 1988) and white-spotted tussock moth (Orgyia
thyellina) (Hosking 2003).

Recognition of the usefulness of community surveil-
lance for detecting new incursions, or new foci of
incursions, has resulted in pest and disease management
programs routinely including some level of investment
in community engagement activities to encourage
reporting. Such activities might include pest displays,
newspaper or magazine articles, identification cards,
posters or even rewards. The reporting mechanism is
often through a telephone ‘hotline’ where calls are
screened and subsequently directed to the relevant
government agency for further action, which might
include a site visit to confirm a detection followed by
treatment and targeted surveillance by the agency.

Despite the routine nature of investment in com-
munity engagement activities in pest and disease
management programs, little is known about the
effectiveness of these activities. This means the level
of community reporting that could be expected for a
given level of investment cannot be estimated with
information currently available. The most pressing
knowledge gaps include: the types of activities that
induce the most reporting; the likelihood that partic-
ular types of people will report pests; the reliability of
these reports; and how characteristics of pests and
diseases affect the level of reporting. Pest and disease
management programs would greatly benefit from
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improved knowledge about passive surveillance, both
in terms of detection of outlier infestations and early
detection of new invasions.

In this paper we propose a typology for community
surveillance but focus on the least studied type of
community surveillance: passive surveillance. We
provide a conceptual model for incorporating passive
surveillance into incursion management programs,
suggest the type of research needed to estimate
optimal investment in passive surveillance, and pro-
pose a framework for gathering data.

The surveillance continuum

The use of reports from the community of their
encounters with invasive species has been variously
termed passive surveillance (Cacho et al. 2010; Froud
et al. 2008; MAFBNZ 2008), general surveillance
(Hammond 2010) and citizen science (Silvertown
2009), each term indicating a surveillance process that
is different to the organised, deliberate searching
undertaken by pest management agencies. Passive
surveillance, general surveillance and citizen science
are often used interchangeably but there are important
differences between them that need to be understood
when planning types and amounts of investment in
surveillance programs.

Describing and defining surveillance undertaken by
the general public is not easy because sometimes their
detections of invasive species occur completely by
chance, while at other times they occur as the result of
organised community or industry activities—there are
different degrees to which detections can be consid-
ered accidental or fortuitous. This is illustrated using a
‘surveillance continuum’ (Fig. 1). At one extreme is
the active, targeted surveillance carried out by pest-
management agencies, involving deliberate, coordi-
nated search for new or managed pests and diseases.
At the other extreme is passive surveillance where
members of the community report chance sightings of
pests and diseases at their discretion. Their reports are
particularly valuable if they lead to detections of new
pests and diseases or information about new outbreaks
of known incursions. Intermediate forms of detection
include citizen science, where scientists and volun-
teers collaborate on specific pest and disease surveil-
lance projects (see for example: Devictor et al. 2010;
Dickinson et al. 2010; Silvertown 2009) and general
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surveillance where stakeholders of agricultural indus-
tries detect and report incursions that affect their
particular industry (see for example: del Rocio
Amezcua et al. 2010; Hammond 2010; Hernandez-
Jover et al. 2011; Rautureau et al. 2012).

Passive surveillance

Passive surveillance can be defined as any encounter
with a pest by members of the public that is reported to
the relevant authority. As discussed earlier, passive
surveillance is the most fortuitous and accidental of all
types of community surveillance (Fig. 1). It is acti-
vated and maintained through public awareness cam-
paigns and their associated community engagement
activities." Community engagement activities about
invasive species are known to raise awareness of that
issue (Marchante et al. 2010; Martin 2007; Reis et al.
2011), result in increased passive surveillance (Brooks
and Galway 2008; Witmer et al. 2007), reduce

! We acknowledge the importance of community reporting that
is not in response to any pest-specific community engagement
activity—often these reports are responsible for the first known
incursions of a pest. The level of biosecurity awareness that
drives those completely passive detections is not explored in this
paper.

groups

reporting times following detection (Hawley 2007),
and increase cost-effectiveness of public engagement
events over time (Cacho et al. 2012).

The action of detecting a pest by a member of the
public is known as a passive detection (Cacho et al.
2010). Understanding the factors that drive the
probability of passive detection—the likelihood that
a pest or disease will be detected and reported—is key
to understanding the level of investment required to
achieve a given level of passive surveillance. The
probability of passive detection depends on (1) the
probability that a species is present in the landscape x
(2) the probability of a person detecting it x (3) the
probability that it is reported (given it is detected). In
this paper we describe a framework for data collection
that would allow us to understand how to increase (2)
and (3), with (1) given. Keith and Spring (2013) used
data collected during the RIFA Eradication Program in
Queensland to report the only known published
estimates of the probability of passive detection:
0.02 and 0.01 per month for urban and rural areas
respectively. The difference in the values reflects the
lower population density in rural areas. These are
considered to be ‘background’ estimates because they
do not distinguish between passive detections made
before community engagement and after community
engagement, but are nevertheless valuable.

@ Springer



Red Imported Fire Ants in Australia
Submission 10 - Supplementary Submission

740

S. M. Hester, O. J. Cacho

Fig. 2 Conceptual model
of a pest-management
protocol featuring passive
surveillance and community
engagement
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Incorporating passive surveillance into pest
and disease management programs

Agencies involved in the management of invasive
species must allocate a limited budget across a range
of activities. Their decision problem is illustrated in
Fig. 2. The budget constrains the options available to
design and implement a management strategy, but the
goal should be to use the budget as efficiently as
possible. The management strategy regulates the
allocation of resources based on the best information
available, often represented as a probability map. This
might be a detailed map containing actual probabil-
ities, or a priority list of sites to be monitored and
treated as necessary.

There are usually four key activities that are funded
as part of pest-management programs: treatment of
known infestations; research to improve future man-
agement decisions; active surveillance; and commu-
nity engagement to encourage the public to keep an
eye out for the pest and report infestations—passive
surveillance. The optimal allocation of resources
between these activities will depend on their relative
effectiveness and cost, with the allocation changing as
management actions evolve in response to an incur-
sion. The relationship between the effort put into
passive surveillance and its outcomes is difficult to
measure compared with the other activities in Fig. 2
whose effectiveness can be measured in more direct
ways (Baxter and Possingham 2011; Cacho et al.
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2006; Leary et al. 2013; Moore et al. 2011; Reed et al.
2015).

Ideally, pest management authorities would know
the probability of passive detection and how this value
relates to the probability of successfully achieving
particular management goals. This is illustrated in
Fig. 3. Increases in the probability of passive detection
improve the probability of achieving eradication and
containment (Panel A). The key is to understand the
level of investment in passive surveillance required to
induce particular values of the probability of passive
detection and how this affects the management
program. For example, increasing the probability of
passive detection from a to b in Panel (A) (0.3-0.7 in
this example) results in the probability of successfully
eradicating a pest rising from O to 0.3, total eradication
program costs fall from $4.8 to 3M (Panel B)—the
pest is eradicated more quickly. Without information
on the level of investment in community engagement
activities required to induce the increase in probability
of passive detection, we can only conclude that a pest
management agency should be willing to spend up to
$1.8M on these activities.

Research needs and data requirements
Unfortunately current knowledge and data collection

practices by pest-management agencies do not provide
enough evidence to quantify the relationship between
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Fig. 3 An illustration of the effect of passive surveillance (as
probability of passive detection) on the probability of successful
eradication and containment of a pest (a) and on the cost of
achieving this success (b). Improving the probability of passive
detection improves success and reduces total program costs. In

investment in community engagement and the subse-
quent changes to reporting by the public. There are
many dimensions to this problem and understanding
the intricacies is crucial to designing efficient com-
munity engagement strategies.

Undertaking community engagement activities in
invasive species management has similarities with
public policy initiatives such as encouraging natural
disaster preparedness, providing a hotline to encour-
age the reporting of neighbourhood crime to police, or
persuading people to wear a face mask during an
influenza epidemic. Such behaviours generally require
some effort on the part of the individual, and while
they may or not may not have individual benefits they
all have substantial public benefit. There is evidence
that the propensity of members of the public to
undertake these behaviours is influenced by demo-
graphic factors, including age, socio-economic status
and ethnicity. Studies demonstrating these relation-
ships have been in areas that include weed manage-
ment (McCluggage 2004), influenza communication
campaigns (Bish and Michie 2010; Eastwood et al.
2009; Gray et al. 2012), law enforcement (Huq et al.
2011), and natural hazard preparedness (Paton et al.
2006).

The literature on community engagement and
public attitudes to invasive species (Bremner and
Park 2007, DEFRA 2008; Kruger et al. 2012)
suggests that the response of the public to awareness

Maximum investment in
community engagement

2.0 1

Total program cost ($M)

1.0 A

0.0 T T T T T T T T T 1
00 01 02 03 04 05 06 07 08 09 10

Probability of passive detection

this example the maximum investment in community engage-
ment to increase the probability of passive detection from a to
b in (a) would be the vertical difference between a to b in (b).
Source redrawn from simulation data reported in Cacho et al.
(2012) and Cacho and Hester (2011)

activities surrounding invasive species is likely to
depend on’:

1. Attributes of the community engagement activi-
ties, such as message content, media channels,
additional media reporting, provision of feedback,
ease of reporting, frequency and location of
activities;

2. Demographic factors within a community, such as
age, gender, knowledge, altruistic or materialistic
tendencies and concern for the environment.

3. Attributes of the pest, such as its potential to cause
physical harm or financial costs, and its detectabil-
ity within the local environment;

We now explain how each of these might be
measured.

Attributes of community engagement activities

To understand whether attributes of different activities
make them more or less effective in terms of the
probability of passive detection, information should be
collected on the type of activity undertaken, the timing
and location of any reports made, and the number of

2 It may also be the case that active surveillance activities in an
area—visibility of traps and pest-management officers—could
in turn increase the probability of passive detection, although
this remains to be tested.
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detections resulting from these reports, including the
number of false positives. There are several ways to
measure effectiveness of a given activity, for example:
the total number of detections; the number of detec-
tions per time period; or the number of reports
(positive and negative) per time period. These values
could simply be monitored for each activity over time
or formal statistical measures could be designed to
determine the relationship between effectiveness and
explanatory factors such as pest characteristics, event
duration, location and reporter characteristics. To test
hypotheses regarding these relationships, data with
enough variation in all factors are required so that
statistical tests can be applied.

Demographic factors

People respond in different ways to information
campaigns, advertisements, rewards and other activ-
ities designed to stimulate passive surveillance.
Assuming that reporting procedures are available
and are not onerous, people’s responses, in combi-
nation with the presence of the pest in a particular
area, will determine the probability of passive
detection.

Community engagement activities will raise com-
munity awareness temporarily and have limited spatial
influence (Cacho et al. 2012). This means it is
important to understand the spatial reach of a partic-
ular event and the length of time that the event will
remain in the memory of the public. This would allow
pest-management agencies to choose the appropriate
timing and location of community engagement events.
The spatial influence of events is difficult to ascertain
as events vary in size, duration and population
catchment and hence would vary in their spatial
influence. There are also likely to be spatio-temporal
correlations between events and passive detections
that must be disentangled using statistical techniques.

Cacho et al. (2012) reported frequency distributions
of distances between events and subsequent passive
detections in the RIFA Eradication Program in
Queensland (Fig. 4). For a single year the authors
found a ‘distance threshold’ at approximately 4.2 km,
at which the average event starts losing its effect on
public awareness (Fig. 4a), but high variability of the
data means that statistical tests are not significant. A
similar relationship was found when all previous years
of events were used, with the distance threshold at just
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above 1 km (Fig. 4b), suggesting that the effect of
events depreciates over time.

Attributes of the pest and invaded environment

An important aspect of passive surveillance programs
is the ability of the reporter to accurately identify the
target species being reported. This is likely to be
related to the characteristics of the pest and whether it
is easily identifiable in the landscape. Of particular
concern is the rate of false positives, where the target
pest is reported as present when it is in fact absent. The
false positive rate is important because, in order to
eradicate an invasion, all detections reported by the
public must be followed up and the pest treated if
present. A rate of false positives that is too high will
result in wasted program resources by leading to
unnecessary active surveillance (Spring and Cacho
2015) and may negate the benefits of passive
detections.

False positives may also occur because the pest is
hard to identify or because the community engage-
ment activities have been badly designed or targeted
but this remains to be tested. False positives may also
decrease over time as knowledge about a pest
improves. The widespread use of smartphones in the
community has allowed the development of applica-
tions that may result in a reduction in false positives.
Some applications send photos of a suspected pest or
disease to pest-control agencies for identification and
verification, while others contain photos of invasive
species that should be reported.

Reliability of reports about a pest, either in response
to a particular activity or bundle of activities, may be
measured from data on the number of reports and the
number of false positives over time. Froud et al. (2008)
used positive predictive value (PPV)—the proportion
of the total number of reports that are confirmed as
positive—to measure the reliability of the general
public’s calls to New Zealand’s Exotic disease and
pest emergency hotline. Over a 3-year period,
although the PPV was only 2%, reports from the
public were responsible for 49% of all the new exotic
organism detections (355 detections in total). Cacho
etal. (2012) used PPV in their analysis of data from the
RIFA Eradication Program in Queensland to suggest
the program’s community engagement activities had
become more effective over time—PPV increased
from 1.1 to 6.1% during the first 10 years of the
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Fig. 4 (a) histogram of distances from each passive detection
in 2008 to the nearest event in 2007; there appears to be a
distance threshold at ~4.2 km at which the average event loses
its effect on public awareness. (b) histogram of distance from

program. The question is then whether the damage that
was avoided through passive detections outweighs the
cost of following up on all public reports.

If enough published results were available, a meta-
analysis (Dodd et al. 2015; Gurevitch and Hedges
1999) of community engagement activities could be

each passive detection in 2008 and the nearest event for all years
prior to 2008; again there is a clear threshold, but this time at just
over 1 km. Source Cacho et al. (2012)

used to test hypothesis regarding pest characteristics
that make them amenable to detection and reporting
by the public. Anecdotal evidence suggests pest
characteristics that make them amenable to reporting
include: whether they bite or sting; whether they are
easily observable and identifiable in the landscape;
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and whether a pest is easily distinguishable from
similar species in the landscape.

Unfortunately not enough published data are avail-
able for any meaningful meta-analysis to be under-
taken currently. Additional data collection from
current and past programs will be required. New data
collection could also involve expert consultations and
detection experiments with volunteers (Hauser et al.
2012; Moore et al. 2011).

Investment in community engagement

The key reason for collecting and analysing data on
community engagement activities is to efficiently
allocate limited pest-control budgets to passive
surveillance. As discussed earlier, the optimal alloca-
tion of resources to community engagement activities,
and thus to passive surveillance, depends on their
relative cost-effectiveness compared to the other
activities that are usually funded as part of pest-
management programs (Fig. 2). Measuring the cost-
effectiveness of passive surveillance would require
analysis of community awareness activities, relating
expenditure on the activities to particular outcomes,
such as the number of reports or detections by
members of the public. Data on the spatial and
temporal aspects of the awareness activities and
subsequent reports, including characteristics of the
individuals making the reports, would also provide
useful information to allow better targeting of

activities and events. This type of data is seldom
recorded or reported by pest-management agencies.

Although this has not been proven empirically, one
would expect passive detections to exhibit diminish-
ing returns with respect to exposure to community
engagement activities. This may be related to the
timing, intensity and location of activities, but may
also be related to the diverse range of attitudes in
human populations.

(Cacho et al. 2012) calculated the change in the
frequency of passive detections per $1000 spent on
community engagement for the RIFA FEradication
Program in Queensland (Fig. 5). Although a signifi-
cant increase in detections per dollar is evident
between 2003 and 2010, this cannot be used as a
measure of cost-effectiveness of community-engage-
ment. The increase in passive detections could have
been caused by a combination of factors, including an
increase in the number of nests available to be
detected, combined with human population growth
in the area infested leading to more people being
available to detect nests.

In the current context the costs of community
engagement depend on the types and scale of activities
undertaken, the benefits are improved detections of
invasive species, leading to reduced future damages.
The only known attempt to estimate the monetary
value of community engagement to enhance passive
surveillance is that of Cacho et al. (2012), who
estimated the savings in active surveillance that were
achieved through reports from the public in the RIFA
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Fig. 6 Detection maps for fire ants (Solenopsis invicta)
invasion in Brisbane, Australia for 2007 to 2010. Actual
detections are indicated with x markers, green dots represent the
area that would be covered with active surveillance when a large
budget (enough to cover 80,000 ha) is available. Search points

were allocated based on probability maps generated using the
model of Schmidt et al. (2010), which calculates probability of

Eradication Program in Queensland. They estimated
that $1m invested in public engagement activities had
resulted in $60m saved in active surveillance costs
between 2006 and 2010. To calculate this figure it was
necessary to construct a counterfactual—the likely
outcome in the absence of community engagement
activities—and this involved some modelling. The
amount of active search that would have been required
to detect all the known ant colonies in the period
2006-2010 if passive surveillance had not been
available was estimated from the data. In the counter-
factual, all nests had to be detected using active
surveillance, with the search area allocated based on a
probability map (Fig. 6) generated using a modified
version of the model of Schmidt et al. (2010).
Combining this information with an active search cost
of $400/ha, resulted in an annual return of $52 million
in avoided active surveillance costs. Comparing this
figure to an average community engagement budget
over the same period of $860,000 results in a return on

200 400 600 800

pest presence spatially at annual intervals based on known ant
colony locations using a Bayesian approach. Blue x markers
indicate actual passive detections that would not have been
detected if only passive surveillance were available. These
missed detections for different budgets were used to construct a
counterfactual to calculate the value of community engagement
in the RIFA program

investment of $60 per $1 invested in community
engagement.

As can be seen in this example, to generate credible
estimates of the benefits and costs of passive surveil-
lance we require a counterfactual, which is unobserv-
able. This means we need to combine empirical
evidence with modelling of the managed spread
process. The data required to generate solid estimates
of the counterfactual is not available for most inva-
sions, hence our emphasis on the need to collect the
right data.

The optimal level of passive surveillance

Economic principles prescribe that resource allocation
should be based on marginal quantities (rates of change)
rather than absolute quantities. The optimal operating
pointis where the marginal benefit of an action equals its
marginal cost. In many practical situations, however, it
is not possible to calculate the cost and benefit functions
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required to derive marginal values through differentia-
tion. This is one reason benefit-cost analysis (BCA) is
popular. In BCA total benefits are compared to total
costs (in present-value terms) for different scenarios,
and the alternative with the highest benefit-cost ratio is
selected (Hester et al. 2013).

In the current context, the optimal level of passive
surveillance would be where the marginal cost of
increasing passive detection by one unit equals the
marginal benefit of doing so. That is the point at which
the resources employed to activate and maintain
passive surveillance are used most efficiently. The
actual optimisation problem is more complex than this
because of its dynamic nature—pests available to be
detected today depend on previous control actions that
have been taken, and the marginal benefit and
marginal cost functions may change through time.

To estimate the marginal cost of passive surveil-
lance we need to derive a function relating expenditure
on community engagement activities to the probability
of passive detection. The derivative of this function
could then be used to calculate the marginal cost of
increasing passive detection probability. On the ben-
efit side, the ideal approach would be to measure the
additional benefit as the avoided damage achieved by
increasing passive detection probability plus the
reduction in eradication costs from savings in eradi-
cation-program duration (Kompas et al. 2016). In
practice, measuring this relationship would require
experiments where the treatment can be compared to a
control. Alternatively, the benefit function could be
inferred through modelling (as in Cacho et al. 2012).

Concluding comments

There is no doubt that the community has an important
role to play in the management of invasive species.
This could occur through involvement of organised
groups of volunteers in citizen science activities, using
information supplied by stakeholders of a particular
industry, or through individuals who are motivated to
report chance sightings of pests as they go about their
everyday life. The typology we present is aimed at
improving the way we manage biological invasions by
understanding how different types of community
surveillance operate within a continuum.

We focus on passive surveillance, the extreme in
the surveillance continuum for which very little is

@ Springer

known. Despite expenditure on community engage-
ment activities becoming a routine aspect of pest-
management programs across the globe, only a small
amount of published research on aspects of commu-
nity engagement effectiveness exists. Our aim is to
suggest a course of action for research on passive
surveillance and to identify data needs. Our ultimate
aim is to guide collection of quantitative information
that will enhance our understanding of passive
surveillance in a meaningful way, as a component in
a surveillance continuum. Much of the data required
for the analysis is relatively easy to collect.

Research linking the effectiveness of different
types of community engagement activities to passive
surveillance is needed not only to improve efficiency
in the use of public funds, but also to reduce the
damage caused by invasions through early detection
with assistance of the public. This research must
consider spatial and temporal variation in the invasion
process as well as its interactions with human popu-
lations. Filling the research gaps identified in this
paper should enable the development of cost-effective
strategies to get the most out of members of the
community in managing invasive species.
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