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Can we ensure a sustainable energy transition using
current battery technologies and do Sodium batteries
have a role to play in the transition?
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Lithium ion batteries (LIBs)...currently the most widespread
battery type - multiple battery chemistries available.
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Figure 2. Li-ion battery production process flow diagram.[26:82:90.92.93]
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Li-ion battery demand expected to grow almost 30%
annually reaching 4,700 GWh by 2030

By sector
PRSI
B Consumer
electronics
~Ox B Stationary
storage
B Mobility
~1,700
- Growth in demand across all applications.
~700 - Amount of Li required for EVs alone projected to
- exceed known currently accessible Li reserves
2022 2025 2030

Source : McKInsey Battery Insights Demand Model OFFICIAL
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e A typical EV has at least 8kg of Lithium ; 30-60kg of Cu;
and for NMC chemistry, up to 14kg Co and up to 40kg Ni
e LFP cathode chemistry is seen as having better ESG as it
avoids Ni/Co as well as overall safer and longer cyclability

e Recycling must be implemented for true
sustainability of battery technologies

EU has regulated re sustainable battery technologies

« Minimum levels of materials recovered from waste batteries: lithium - 50% by 2027
and 80% by 2031; cobalt, copper, lead and nickel - 90% by 2027 and 95% by 2031;

» Minimum levels of recycled content from manufacturing and consumer waste for use
in new batteries: eight years after the entry into force of the regulation - 16% for cobalt,
85% for lead, 6% for lithium and 6% for nickel; 13 years after the entry into force: 26%
for cobalt, 85% for lead, 12% for lithium and 15% for nickel.

https://www.europarl.europa.eu/news/en/press-room/202306091PR96218¢making-batteries-more-sustainable-more-durable-and-better-performing
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Currently three processes for recycﬁAhg LIBs —
Direct Recycling, Pyrometallurgy and Hydrometallurgy
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Zachary J. Baum et.al. ACS Energy Lett. 2022, 7, 2, 712-719
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Lifecycle GHGs for Electric Vehicle and Petrol Vehicle

(from USA EPA report)

74%

65%
17%
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Gas car EV with 300-mile range
mBattery  m Other Manufacturing & End of Life  m Feedstock & Fuel Vehicle In-Use

vehicles being compared, EV battery size and chemistry, vehicle lifetimes, and the

electricity grid used to recharge the EV, among other factors.

EVs are still cleaner with respect
to GHGs than petrol/diesel cars

https://www.epa.gov/greenvehicles/electric-vehicle-myths;

https://greet.es.anl.gov/

However, we need to keep improving mining, extraction, manufacturing and
RECYCLING processes and implement manufacturing with renewable electricity
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Beyond current Li-ion battery technologies

Solid State Lithium(based on Li metal anode)

Sodium-ion battery
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Lithium-metal polymer
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Lithium-sulfur battery Metal-air battery

Alternatives to Alternatives
Lithium anode: high energy
Sodium, Potassium, €lectrodes:
| Aluminium metal-air EV (Phinergy, Israel) MagneSiUm, anode: Silicon.
I Aluminium cathode: S, O,
1mmil = Flow cell (air).

Zinc-bromide flow battery (Redflow,
Australia), vanadium flow (redT), Iron
flow (Lockheed Martin amongst
others)
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Na ion battery more sustainable in terms of resources

Sustainable Na-ion
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Current work also assessing feasibility of
- Waste textiles; food and organic waste collections
- biochar from water treatment OFFICIAL
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Commercialization of different
Na battery chemistries by e
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-First Faradion stationary
storage battery installed
in NSW Australia by
Nation Energie Dec 2022
- Reliance (India)
acquired Faradion 2022

HiNa releases first Na
battery EV Feb 2023
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Benefits of Na batteries

»Cheaper and abundant resources, use Al current collector instead of Cu

» Current NIBs have similar energy density to existing LFP LIBs (160Wh
kg1) — and still opportunity to improve

»Much wider range of operating temperatures

»Safer and can be shipped charged (where LIBs cannot)

Opportunity for Na batteries

»Na batteries can be manufactured on same line as LIBs so reduced
energy costs need to be considered as with LIBs

»Design Na batteries with recyclability in mind and with longer life

» Target specific applications dont compete with LIB (eg lower range EVs,
home storage, telecommunications, power tools, light vehicles ....)

»Commercialisation still in it's infancy so opportunities to innovate; safer
electrolytes; novel hard carbons; sustainable manufacturing
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Summary

e Lithium ion battery here for the long haul and in particular for transportation

e GHG and electricity requirements for LIB manufacturing needs to be considered and
advanced, more sustainable methods researched and implemented

e Recycling will be critical for sustainability and in the materials supply chain

e Promising emerging technologies (already in the commercialization phase) include
Sodium lon and Lithium Sulfur batteries; these will be in addition to LIBs not instead of.
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